IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i10p2821-d232090.html
   My bibliography  Save this article

A Numerical Study of Mountain-Plain Breeze Circulation in Eastern Chengdu, China

Author

Listed:
  • Yue Tian

    (Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China)

  • Junfeng Miao

    (Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China)

Abstract

The spatiotemporal structure and evolution of the thermally-induced mountain-plain breeze circulation in the Longquan Mountain, eastern Chengdu, are studied by the WRF-ARW model based on a two-day case. Turbulence characteristics are also examined to better understand the local circulation of the area. Simulation results show that the 2 m temperature distribution of the plain and mountain areas is peculiar due to the occurrence of the temperature inversion. The plain and mountain breezes can be predicted explicitly by the model, and the consequent circulations are coupled with other factors such as turbulent movement and vertically propagating mountain waves. Owing to this unique terrain feature, the north portion of the mountain demonstrates more evident mountain and plain breezes compared to the south and middle portions. Stronger turbulences are formed over the mountain area compared to the plain area. Vertical cross-sections of turbulent heat, moisture and momentum fluxes show that turbulent transport plays an important role in the development and elimination of mountain-plain breeze circulation.

Suggested Citation

  • Yue Tian & Junfeng Miao, 2019. "A Numerical Study of Mountain-Plain Breeze Circulation in Eastern Chengdu, China," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2821-:d:232090
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/10/2821/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/10/2821/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. XU Jianzhong & Albina Assenova & Vasilii Erokhin, 2018. "Renewable Energy and Sustainable Development in a Resource-Abundant Country: Challenges of Wind Power Generation in Kazakhstan," Sustainability, MDPI, vol. 10(9), pages 1-21, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Igor Gómez & Sergio Molina & Juan José Galiana-Merino & María José Estrela & Vicente Caselles, 2021. "Impact of Noah-LSM Parameterizations on WRF Mesoscale Simulations: Case Study of Prevailing Summer Atmospheric Conditions over a Typical Semi-Arid Region in Eastern Spain," Sustainability, MDPI, vol. 13(20), pages 1-17, October.
    2. Adil Dilawar & Baozhang Chen & Lifeng Guo & Shuan Liu & Muhammad Shafeeque & Arfan Arshad & Yawar Hussain & Muhammad Ateeq Qureshi & Alphonse Kayiranga & Fei Wang & Simon Measho & Huifang Zhang, 2021. "Evaluation the WRF Model with Different Land Surface Schemes: Heat Wave Event Simulations and Its Relation to Pacific Variability over Coastal Region, Karachi, Pakistan," Sustainability, MDPI, vol. 13(22), pages 1-23, November.
    3. Bingxue Wu & Junfeng Miao & Wen Feng, 2022. "Impact of Land Cover Change on Mountain Circulation over the Hainan Island, China," Sustainability, MDPI, vol. 14(18), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tuan-Viet Hoang & Pouya Ifaei & Kijeon Nam & Jouan Rashidi & Soonho Hwangbo & Jong-Min Oh & ChangKyoo Yoo, 2018. "Optimal Management of a Hybrid Renewable Energy System Coupled with a Membrane Bioreactor Using Enviro-Economic and Power Pinch Analyses for Sustainable Climate Change Adaption," Sustainability, MDPI, vol. 11(1), pages 1-22, December.
    2. Henrique Oliveira & Víctor Moutinho, 2021. "Renewable Energy, Economic Growth and Economic Development Nexus: A Bibliometric Analysis," Energies, MDPI, vol. 14(15), pages 1-28, July.
    3. Elena Shadrina, 2020. "Non-Hydropower Renewable Energy in Central Asia: Assessment of Deployment Status and Analysis of Underlying Factors," Energies, MDPI, vol. 13(11), pages 1-29, June.
    4. Elżbieta Kacperska & Katarzyna Łukasiewicz & Piotr Pietrzak, 2021. "Use of Renewable Energy Sources in the European Union and the Visegrad Group Countries—Results of Cluster Analysis," Energies, MDPI, vol. 14(18), pages 1-17, September.
    5. Dongmyoung Kim & Taesu Jeon & Insu Paek & Daeyoung Kim, 2022. "A Study on Available Power Estimation Algorithm and Its Validation," Energies, MDPI, vol. 15(7), pages 1-14, April.
    6. Chaoli Tang & Xinhua Tao & Yuanyuan Wei & Ziyue Tong & Fangzheng Zhu & Han Lin, 2022. "Analysis and Prediction of Wind Speed Effects in East Asia and the Western Pacific Based on Multi-Source Data," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    7. Robert Ulewicz & Dominika Siwiec & Andrzej Pacana & Magdalena Tutak & Jarosław Brodny, 2021. "Multi-Criteria Method for the Selection of Renewable Energy Sources in the Polish Industrial Sector," Energies, MDPI, vol. 14(9), pages 1-30, April.
    8. Tetsuya Nakamura & Atsushi Maruyama & Satoru Masuda & Steven Lloyd & Akifumi Kuchiki, 2023. "Knowledge of Energy Resources and Next Generation Energy Choice Behaviour: A Case Study of Kazakhstan," Sustainability, MDPI, vol. 15(17), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2821-:d:232090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.