IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i5p1605-d146819.html
   My bibliography  Save this article

Impact of Asynchronous Renewable Generation Infeed on Grid Frequency: Analysis Based on Synchrophasor Measurements

Author

Listed:
  • Evangelia Xypolytou

    (Institute of Telecommunications, TU Wien, Gusshausstrasse 25, 1040 Vienna, Austria)

  • Wolfgang Gawlik

    (Institute of Energy Systems and Electrical Drives, TU Wien, Gusshausstrasse 25, 1040 Vienna, Austria)

  • Tanja Zseby

    (Institute of Telecommunications, TU Wien, Gusshausstrasse 25, 1040 Vienna, Austria)

  • Joachim Fabini

    (Institute of Telecommunications, TU Wien, Gusshausstrasse 25, 1040 Vienna, Austria)

Abstract

The increasing power in-feed of Non-Synchronous Renewable Energy Sources (NS-RES) in the grid has raised concerns about the frequency stability. The volatile RES power output and absence of inertia in many types of NS-RES affect the balance between power consumption and production. Therefore, the dynamics of the power grid frequency become more complex. Extreme grid frequency deviations and fast variations can lead to partitioning and load shedding in the case of under-frequency. In the case of over-frequency, it can lead to overloading, voltage collapse and blackouts. The Rate of Change of Frequency (RoCoF) reflects an aspect of the stability status of the grid and therefore its analysis with regard to Non-Synchronous Instant Penetration (NSIP) is of great importance. In this work, two months of high-resolution frequency synchrophasor measurements during 18 January 2018–18 March 2018 recorded in Austria were analyzed to investigate the impact of NS-RES on the frequency. The correlation of RoCoF with the NSIP in Austria and Germany and with the frequency deviation were examined. It was observed that with a maximum NSIP share up to 74 % of the total power generation in these two countries, there was no critical increase of RoCoF or abnormal frequency deviation in the power grid.

Suggested Citation

  • Evangelia Xypolytou & Wolfgang Gawlik & Tanja Zseby & Joachim Fabini, 2018. "Impact of Asynchronous Renewable Generation Infeed on Grid Frequency: Analysis Based on Synchrophasor Measurements," Sustainability, MDPI, vol. 10(5), pages 1-10, May.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1605-:d:146819
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/5/1605/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/5/1605/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mararakanye, Ndamulelo & Bekker, Bernard, 2019. "Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 441-451.
    2. Aranit Shkurti, 2018. "Energy Consumption Modeling in the Western Balkan Countries Using a Top-Down Approach," Academic Journal of Interdisciplinary Studies, Richtmann Publishing Ltd, vol. 7, November.
    3. Sohail Sarwar & Hazlie Mokhlis & Mohamadariff Othman & Munir Azam Muhammad & J. A. Laghari & Nurulafiqah Nadzirah Mansor & Hasmaini Mohamad & Alireza Pourdaryaei, 2020. "A Mixed Integer Linear Programming Based Load Shedding Technique for Improving the Sustainability of Islanded Distribution Systems," Sustainability, MDPI, vol. 12(15), pages 1-23, August.
    4. Sohail Khan & Benoit Bletterie & Adolfo Anta & Wolfgang Gawlik, 2018. "On Small Signal Frequency Stability under Virtual Inertia and the Role of PLLs," Energies, MDPI, vol. 11(9), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1605-:d:146819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.