Author
Listed:
- Zixuan Han
(Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA)
- Tao Li
(School of Statistics and Data Science, Shanghai University of Finance and Economics, Shanghai 200433, China)
- Jinhong You
(School of Statistics and Data Science, Shanghai University of Finance and Economics, Shanghai 200433, China)
- Narayanaswamy Balakrishnan
(Department of Mathematics and Statistics, McMaster University, Hamilton, ON L8S 4L8, Canada)
Abstract
In many complex applications, both data heterogeneity and homogeneity are present simultaneously. Overlooking either aspect can lead to misleading statistical inferences. Moreover, the increasing prevalence of complex, non-Euclidean data calls for more sophisticated modeling techniques. To address these challenges, we propose a density data response additive model, where the response variable is represented by a distributional density function. In this framework, individual effect curves are assumed to be homogeneous within groups but heterogeneous across groups, while covariates that explain variation share common additive bivariate functions. We begin by applying a transformation to map density functions into a linear space. To estimate the unknown subject-specific functions and the additive bivariate components, we adopt a B-spline series approximation method. Latent group structures are uncovered using a hierarchical agglomerative clustering algorithm, which allows our method to recover the true underlying groupings with high probability. To further improve estimation efficiency, we develop refined spline-backfitted local linear estimators for both the grouped structures and the additive bivariate functions in the post-grouping model. We also establish the asymptotic properties of the proposed estimators, including their convergence rates, asymptotic distributions, and post-grouping oracle efficiency. The effectiveness of our method is demonstrated through extensive simulation studies and real-world data analysis, both of which show promising and robust performance.
Suggested Citation
Zixuan Han & Tao Li & Jinhong You & Narayanaswamy Balakrishnan, 2025.
"Individual Homogeneity Learning in Density Data Response Additive Models,"
Stats, MDPI, vol. 8(3), pages 1-27, August.
Handle:
RePEc:gam:jstats:v:8:y:2025:i:3:p:71-:d:1721169
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:8:y:2025:i:3:p:71-:d:1721169. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.