IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v8y2025i2p46-d1672622.html
   My bibliography  Save this article

New Methods for Multivariate Normal Moments

Author

Listed:
  • Christopher Stroude Withers

    (Callaghan Innovation (Formerly Industrial Research Ltd.), 101 Allington Road, Wellington 6012, New Zealand)

Abstract

Multivariate normal moments are foundational for statistical methods. The derivation and simplification of these moments are critical for the accuracy of various statistical estimates and analyses. Normal moments are the building blocks of the Hermite polynomials, which in turn are the building blocks of the Edgeworth expansions for the distribution of parameter estimates. Isserlis (1918) gave the bivariate normal moments and two special cases of trivariate moments. Beyond that, convenient expressions for multivariate variate normal moments are still not available. We compare three methods for obtaining them, the most powerful being the differential method. We give simpler formulas for the bivariate moment than that of Isserlis, and explicit expressions for the general moments of dimensions 3 and 4.

Suggested Citation

  • Christopher Stroude Withers, 2025. "New Methods for Multivariate Normal Moments," Stats, MDPI, vol. 8(2), pages 1-21, June.
  • Handle: RePEc:gam:jstats:v:8:y:2025:i:2:p:46-:d:1672622
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/8/2/46/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/8/2/46/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Withers, Christopher S. & Nadarajah, Saralees, 2012. "Moments and cumulants for the complex Wishart," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 242-247.
    2. Phillips, Kem, 2010. "R Functions to Symbolically Compute the Central Moments of the Multivariate Normal Distribution," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(c01).
    3. C. S. Withers, 2024. "5th-Order Multivariate Edgeworth Expansions for Parametric Estimates," Mathematics, MDPI, vol. 12(6), pages 1-28, March.
    4. Withers, Christopher S. & Nadarajah, Saralees, 2014. "The dual multivariate Charlier and Edgeworth expansions," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 76-85.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ñíguez, Trino-Manuel & Perote, Javier, 2016. "Multivariate moments expansion density: Application of the dynamic equicorrelation model," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 216-232.
    2. Di Nardo, Elvira, 2014. "On a symbolic representation of non-central Wishart random matrices with applications," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 121-135.
    3. Christopher S. Withers & Saralees Nadarajah, 2016. "Expansions for Log Densities of Multivariate Estimates," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 911-920, September.
    4. Yu, Haiyan & Yang, Ching-Chi & Yu, Ping, 2023. "Constrained optimization for stratified treatment rules in reducing hospital readmission rates of diabetic patients," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1355-1364.
    5. C. S. Withers, 2024. "5th-Order Multivariate Edgeworth Expansions for Parametric Estimates," Mathematics, MDPI, vol. 12(6), pages 1-28, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:8:y:2025:i:2:p:46-:d:1672622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.