IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v10y2021i3p24-d513438.html
   My bibliography  Save this article

Effectiveness of Nature-Based Solutions on Pluvial Flood Hazard Mitigation: The Case Study of the City of Eindhoven (The Netherlands)

Author

Listed:
  • Sandra Costa

    (Centre for Environmental and Maritime Studies (CESAM) & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal)

  • Rik Peters

    (Green and Water Department, Municipality of Eindhoven, 5600 RB Eindhoven, The Netherlands)

  • Ricardo Martins

    (Centre for Environmental and Maritime Studies (CESAM) & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal)

  • Luuk Postmes

    (Green and Water Department, Municipality of Eindhoven, 5600 RB Eindhoven, The Netherlands)

  • Jan Jacob Keizer

    (Centre for Environmental and Maritime Studies (CESAM) & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal)

  • Peter Roebeling

    (Centre for Environmental and Maritime Studies (CESAM) & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
    Wageningen Economic Research, Wageningen University and Research, 6708 PB Wageningen, The Netherlands)

Abstract

Urbanization leads to changes in the surface cover that alter the hydrological cycle of cities, particularly by increasing the impervious area and, thereby, reducing the interception, storage and infiltration capacity of rainwater. Nature-based solutions (NBS) can contribute to flood risk mitigation in urbanized areas by restoring hydrological functions. However, the effects of NBS on flood risk mitigation are complex and can differ substantially with the type of the NBS. Therefore, the effectiveness of NBS at the urban catchment scale is still subject to much debate, especially at the scale of urban catchments. In this study, the effects of different NBS on urban flood mitigation were evaluated for the city of Eindhoven in The Netherlands, as it has a history of urban flood events. To this end, various NBS scenarios were defined by municipal stakeholders and their impacts modelled with the numerical model Infoworks ICM. This was done for design storms with short, medium and long return periods (5, 10 and 100 years). Overall, the simulated NBS were effective in flood risk mitigation, reducing the flooded area as well as flood depth. The effectiveness of the individual NBS scenarios, however, depended strongly on the location and extension of the NBS, as well as on storm intensity. The effectiveness tended to increase with the increase in NBS surface area, while it tended to decrease with increasing storm intensity and, hence, return period. The NBS solution increasing street water storage was revealed to be more effective than those involving green car parks and green roofs. This study showed that numerical flooding models can be useful tools to assess the effects of NBS to reduce flood extent, water depth and/or velocity, providing insights that can support city planners to design and compare alternative strategies and plans for urban flood risk mitigation.

Suggested Citation

  • Sandra Costa & Rik Peters & Ricardo Martins & Luuk Postmes & Jan Jacob Keizer & Peter Roebeling, 2021. "Effectiveness of Nature-Based Solutions on Pluvial Flood Hazard Mitigation: The Case Study of the City of Eindhoven (The Netherlands)," Resources, MDPI, vol. 10(3), pages 1-14, March.
  • Handle: RePEc:gam:jresou:v:10:y:2021:i:3:p:24-:d:513438
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/10/3/24/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/10/3/24/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Janez Sušnik & Clemens Strehl & Luuk Postmes & Lydia Vamvakeridou-Lyroudia & Hans-Joachim Mälzer & Dragan Savić & Zoran Kapelan, 2015. "Assessing Financial Loss due to Pluvial Flooding and the Efficacy of Risk-Reduction Measures in the Residential Property Sector," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 161-179, January.
    2. Xingqi Zhang & Xinya Guo & Maochuan Hu, 2016. "Hydrological effect of typical low impact development approaches in a residential district," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 389-400, January.
    3. María Bermúdez & Victor Ntegeka & Vincent Wolfs & Patrick Willems, 2018. "Development and Comparison of Two Fast Surrogate Models for Urban Pluvial Flood Simulations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2801-2815, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atsuya Ikemoto & So Kazama & Takeo Yoshida & Hayata Yanagihara, 2023. "Evaluation of an Adaptation Strategy for Flood Damage Mitigation Under Climate Change Through the Use of Irrigation Reservoirs in Japan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 4159-4175, August.
    2. Bikram Manandhar & Shenghui Cui & Lihong Wang & Sabita Shrestha, 2023. "Urban Flood Hazard Assessment and Management Practices in South Asia: A Review," Land, MDPI, vol. 12(3), pages 1-29, March.
    3. Anna Biasin & Mauro Masiero & Giulia Amato & Davide Pettenella, 2023. "Nature-Based Solutions Modeling and Cost-Benefit Analysis to Face Climate Change Risks in an Urban Area: The Case of Turin (Italy)," Land, MDPI, vol. 12(2), pages 1-32, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seyed M. H. S. Rezvani & Maria João Falcão Silva & Nuno Marques de Almeida, 2024. "Urban Resilience Index for Critical Infrastructure: A Scenario-Based Approach to Disaster Risk Reduction in Road Networks," Sustainability, MDPI, vol. 16(10), pages 1-41, May.
    2. Huafei Yu & Yaolong Zhao & Yingchun Fu, 2019. "Optimization of Impervious Surface Space Layout for Prevention of Urban Rainstorm Waterlogging: A Case Study of Guangzhou, China," IJERPH, MDPI, vol. 16(19), pages 1-28, September.
    3. Vasilis Bellos & Ino Papageorgaki & Ioannis Kourtis & Harris Vangelis & Ioannis Kalogiros & George Tsakiris, 2020. "Reconstruction of a flash flood event using a 2D hydrodynamic model under spatial and temporal variability of storm," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 711-726, April.
    4. Chunlin Li & Miao Liu & Yuanman Hu & Rongqing Han & Tuo Shi & Xiuqi Qu & Yilin Wu, 2018. "Evaluating the Hydrologic Performance of Low Impact Development Scenarios in a Micro Urban Catchment," IJERPH, MDPI, vol. 15(2), pages 1-14, February.
    5. Yawei Qin & Yongjin Lei & Xiangyu Gong & Wanglai Ju, 2022. "A model involving meteorological factors for short- to medium-term, water-level predictions of small- and medium-sized urban rivers," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 725-739, March.
    6. Linhan Yang & Jianzhu Li & Aiqing Kang & Shuai Li & Ping Feng, 2020. "The Effect of Nonstationarity in Rainfall on Urban Flooding Based on Coupling SWMM and MIKE21," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1535-1551, March.
    7. Ambika Markanday & Ibon Galarraga & Anil Markandya, 2019. "A Critical Review Of Cost-Benefit Analysis For Climate Change Adaptation In Cities," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-31, November.
    8. Yu Chen & Jacopo Gaspari, 2023. "Exploring an Integrated System for Urban Stormwater Management: A Systematic Literature Review of Solutions at Building and District Scales," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    9. Shadi Arfa & Mohsen Nasseri & Hassan Tavakol-Davani, 2021. "Comparing the Effects of Different Daily and Sub-Daily Downscaling Approaches on the Response of Urban Stormwater Collection Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 505-533, January.
    10. María Bermúdez & Andreas Paul Zischg, 2018. "Sensitivity of flood loss estimates to building representation and flow depth attribution methods in micro-scale flood modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1633-1648, July.
    11. Elena Cristiano & Roberto Deidda & Francesco Viola, 2020. "EHSMu: a New Ecohydrological Streamflow Model to Estimate Runoff in Urban Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4865-4879, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:10:y:2021:i:3:p:24-:d:513438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.