IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i23p3086-d691724.html
   My bibliography  Save this article

Fixed-Time Synchronization of Neural Networks Based on Quantized Intermittent Control for Image Protection

Author

Listed:
  • Wenqiang Yang

    (Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China)

  • Li Xiao

    (Key Laboratory of Machine Perception and Children’s Intelligence Development, Chongqing University of Education, Chongqing 400067, China)

  • Junjian Huang

    (Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China)

  • Jinyue Yang

    (Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China)

Abstract

This paper considers the fixed-time synchronization (FIXTS) of neural networks (NNs) by using quantized intermittent control (QIC). Based on QIC, a fixed-time controller is designed to ensure that the NNs achieve synchronization in finite time. With this controller, the settling time can be estimated regardless of initial conditions. After ensuring that the system has stabilized through this strategy, it is suitable for image protection given the behavior of the system. Meanwhile, the encryption effect of the image depends on the encryption algorithm, and the quality of the decrypted image depends on the synchronization error of NNs. The numerical results show that the designed controller is effective and validate the practical application of FIXTS of NNs in image protection.

Suggested Citation

  • Wenqiang Yang & Li Xiao & Junjian Huang & Jinyue Yang, 2021. "Fixed-Time Synchronization of Neural Networks Based on Quantized Intermittent Control for Image Protection," Mathematics, MDPI, vol. 9(23), pages 1-14, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3086-:d:691724
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/23/3086/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/23/3086/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mazloom, Sahar & Eftekhari-Moghadam, Amir Masud, 2009. "Color image encryption based on Coupled Nonlinear Chaotic Map," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1745-1754.
    2. Tutueva, Aleksandra V. & Nepomuceno, Erivelton G. & Karimov, Artur I. & Andreev, Valery S. & Butusov, Denis N., 2020. "Adaptive chaotic maps and their application to pseudo-random numbers generation," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    3. Shuai Liu & Chuan Chen & Haipeng Peng, 2020. "Fixed-Time Synchronization of Neural Networks with Discrete Delay," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-9, August.
    4. Nguyen, Duy-Minh & Bahri, Imen & Krebs, Guillaume & Berthelot, Eric & Marchand, Claude, 2019. "Vibration study of the intermittent control for a switched reluctance machine," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 308-325.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen Yang & Zhengqiu Zhang, 2023. "New Results on Finite-Time Synchronization of Complex-Valued BAM Neural Networks with Time Delays by the Quadratic Analysis Approach," Mathematics, MDPI, vol. 11(6), pages 1-21, March.
    2. Lu Pang & Cheng Hu & Juan Yu & Haijun Jiang, 2022. "Fixed-Time Synchronization for Fuzzy-Based Impulsive Complex Networks," Mathematics, MDPI, vol. 10(9), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. García-Martínez, M. & Ontañón-García, L.J. & Campos-Cantón, E. & Čelikovský, S., 2015. "Hyperchaotic encryption based on multi-scroll piecewise linear systems," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 413-424.
    2. Wu, Hongjuan & Li, Chuandong & He, Zhilong & Wang, Yinuo & He, Yingying, 2021. "Lag synchronization of nonlinear dynamical systems via asymmetric saturated impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Bowen Zhang & Lingfeng Liu, 2023. "Chaos-Based Image Encryption: Review, Application, and Challenges," Mathematics, MDPI, vol. 11(11), pages 1-39, June.
    4. Tutueva, Aleksandra V. & Karimov, Artur I. & Moysis, Lazaros & Volos, Christos & Butusov, Denis N., 2020. "Construction of one-way hash functions with increased key space using adaptive chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    5. Shihong Zhang & Hu Shi & Baizhong Wang & Chunlu Ma & Qinghua Li, 2024. "A Dynamic Hierarchical Improved Tyrannosaurus Optimization Algorithm with Hybrid Topology Structure," Mathematics, MDPI, vol. 12(10), pages 1-35, May.
    6. Trujillo-Toledo, D.A. & López-Bonilla, O.R. & García-Guerrero, E.E. & Tlelo-Cuautle, E. & López-Mancilla, D. & Guillén-Fernández, O. & Inzunza-González, E., 2021. "Real-time RGB image encryption for IoT applications using enhanced sequences from chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    7. Yan, Yanjun & Chen, Kai & Zhao, Yijiu & Wang, Houjun & Xu, Bo & Wang, Yifan, 2024. "An innovative orthogonal matrix based on nonlinear chaotic system for compressive sensing," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    8. Dong, Youheng & Zhao, Geng, 2021. "A spatiotemporal chaotic system based on pseudo-random coupled map lattices and elementary cellular automata," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    9. Yuan, Manman & Luo, Xiong & Mao, Xue & Han, Zhen & Sun, Lei & Zhu, Peican, 2022. "Event-triggered hybrid impulsive control on lag synchronization of delayed memristor-based bidirectional associative memory neural networks for image hiding," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    10. Othman Abdullah Almatroud & Viet-Thanh Pham, 2023. "Building Fixed Point-Free Maps with Memristor," Mathematics, MDPI, vol. 11(6), pages 1-11, March.
    11. Lu, Guangqing & Smidtaite, Rasa & Navickas, Zenonas & Ragulskis, Minvydas, 2018. "The Effect of Explosive Divergence in a Coupled Map Lattice of Matrices," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 308-313.
    12. Nada E. El-Meligy & Tamer O. Diab & Ashraf S. Mohra & Ashraf Y. Hassan & Wageda I. El-Sobky, 2022. "A Novel Dynamic Mathematical Model Applied in Hash Function Based on DNA Algorithm and Chaotic Maps," Mathematics, MDPI, vol. 10(8), pages 1-21, April.
    13. Tutueva, Aleksandra V. & Moysis, Lazaros & Rybin, Vyacheslav G. & Kopets, Ekaterina E. & Volos, Christos & Butusov, Denis N., 2022. "Fast synchronization of symmetric Hénon maps using adaptive symmetry control," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    14. Wang, Xingyuan & Yang, Jingjing & Guan, Nana, 2021. "High-sensitivity image encryption algorithm with random cross diffusion based on dynamically random coupled map lattice model," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    15. Motaeb Eid Alshammari & Makbul A. M. Ramli & Ibrahim M. Mehedi, 2021. "A New Chaotic Artificial Bee Colony for the Risk-Constrained Economic Emission Dispatch Problem Incorporating Wind Power," Energies, MDPI, vol. 14(13), pages 1-24, July.
    16. Hongyan Zang & Mengdan Tai & Xinyuan Wei, 2022. "Image Encryption Schemes Based on a Class of Uniformly Distributed Chaotic Systems," Mathematics, MDPI, vol. 10(7), pages 1-21, March.
    17. Sukegawa, Noriyoshi & Ikeguchi, Tohru, 2022. "How to perturb Bernoulli shift map," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    18. Artur I. Karimov & Ekaterina Kopets & Erivelton G. Nepomuceno & Denis Butusov, 2021. "Integrate-and-Differentiate Approach to Nonlinear System Identification," Mathematics, MDPI, vol. 9(23), pages 1-19, November.
    19. Darani, A. Yousefian & Yengejeh, Y. Khedmati & Pakmanesh, H. & Navarro, G., 2024. "Image encryption algorithm based on a new 3D chaotic system using cellular automata," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    20. Yamina Soula & Hadi Jahanshahi & Abdullah A. Al-Barakati & Irene Moroz, 2023. "Dynamics and Global Bifurcations in Two Symmetrically Coupled Non-Invertible Maps," Mathematics, MDPI, vol. 11(6), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3086-:d:691724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.