IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i21p2680-d662282.html
   My bibliography  Save this article

Hybrid Inertial Accelerated Algorithms for Solving Split Equilibrium and Fixed Point Problems

Author

Listed:
  • Yanlai Song

    (College of Science, Zhongyuan University of Technology, Zhengzhou 450007, China)

Abstract

In this paper, we introduce a new hybrid inertial accelerated algorithm with a line search technique for solving fixed point problems for demimetric mapping and split equilibrium problems in Hilbert spaces. The algorithm is inspired by Tseng’s extragradient method and the viscosity method. Then, we establish and prove the strong convergence theorem under proper conditions. Furthermore, we also give a numerical example to support the main results. The main results are new and the proofs are relatively simple and different from those in early and recent literature.

Suggested Citation

  • Yanlai Song, 2021. "Hybrid Inertial Accelerated Algorithms for Solving Split Equilibrium and Fixed Point Problems," Mathematics, MDPI, vol. 9(21), pages 1-19, October.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2680-:d:662282
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/21/2680/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/21/2680/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gang Cai & Qiao-Li Dong & Yu Peng, 2021. "Strong Convergence Theorems for Solving Variational Inequality Problems with Pseudo-monotone and Non-Lipschitz Operators," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 447-472, February.
    2. Yao, Yonghong & Cho, Yeol Je & Liou, Yeong-Cheng, 2011. "Algorithms of common solutions for variational inclusions, mixed equilibrium problems and fixed point problems," European Journal of Operational Research, Elsevier, vol. 212(2), pages 242-250, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanlai Song & Omar Bazighifan, 2022. "Two Regularization Methods for the Variational Inequality Problem over the Set of Solutions of the Generalized Mixed Equilibrium Problem," Mathematics, MDPI, vol. 10(16), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanlai Song & Omar Bazighifan, 2022. "A New Alternative Regularization Method for Solving Generalized Equilibrium Problems," Mathematics, MDPI, vol. 10(8), pages 1-14, April.
    2. Yanlai Song & Omar Bazighifan, 2022. "Modified Inertial Subgradient Extragradient Method with Regularization for Variational Inequality and Null Point Problems," Mathematics, MDPI, vol. 10(14), pages 1-17, July.
    3. Yonghong Yao & Yeong-Cheng Liou & Ngai-Ching Wong, 2013. "Superimposed optimization methods for the mixed equilibrium problem and variational inclusion," Journal of Global Optimization, Springer, vol. 57(3), pages 935-950, November.
    4. Yanlai Song & Omar Bazighifan, 2022. "Regularization Method for the Variational Inequality Problem over the Set of Solutions to the Generalized Equilibrium Problem," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
    5. Yanlai Song & Omar Bazighifan, 2022. "Two Regularization Methods for the Variational Inequality Problem over the Set of Solutions of the Generalized Mixed Equilibrium Problem," Mathematics, MDPI, vol. 10(16), pages 1-20, August.
    6. Yanlai Song & Mihai Postolache, 2021. "Modified Inertial Forward–Backward Algorithm in Banach Spaces and Its Application," Mathematics, MDPI, vol. 9(12), pages 1-17, June.
    7. Yun-Ling Cui & Lu-Chuan Ceng & Fang-Fei Zhang & Cong-Shan Wang & Jian-Ye Li & Hui-Ying Hu & Long He, 2022. "Modified Mann-Type Subgradient Extragradient Rules for Variational Inequalities and Common Fixed Points Implicating Countably Many Nonexpansive Operators," Mathematics, MDPI, vol. 10(11), pages 1-26, June.
    8. Yan Tang & Yeol Je Cho, 2019. "Convergence Theorems for Common Solutions of Split Variational Inclusion and Systems of Equilibrium Problems," Mathematics, MDPI, vol. 7(3), pages 1-25, March.
    9. Farajzadeh, A.P. & Plubtieng, S. & Ungchittrakool, K. & Kumtaeng, D., 2015. "Generalized mixed equilibrium problems with generalized α -η -monotone bifunction in topological vector spaces," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 313-319.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2680-:d:662282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.