IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i9p1530-d410297.html
   My bibliography  Save this article

Systematic Review of Geometrical Approaches and Analytical Integration for Chen’s System

Author

Listed:
  • Remus-Daniel Ene

    (Department of Mathematics, Politehnica University of Timişoara, 300006 Timişoara, Romania
    These authors contributed equally to this work.)

  • Camelia Pop

    (Department of Mathematics, Politehnica University of Timişoara, 300006 Timişoara, Romania
    These authors contributed equally to this work.)

  • Camelia Petrişor

    (Department of Mathematics, Politehnica University of Timişoara, 300006 Timişoara, Romania
    These authors contributed equally to this work.)

Abstract

The main goal of this paper is to present an analytical integration in connection with the geometrical frame given by the Hamilton–Poisson formulation of a specific case of Chen’s system. In this special case we construct an analytic approximate solution using the Multistage Optimal Homotopy Asymptotic Method (MOHAM). Numerical simulations are also presented in order to make a comparison between the analytic approximate solution and the corresponding numerical solution.

Suggested Citation

  • Remus-Daniel Ene & Camelia Pop & Camelia Petrişor, 2020. "Systematic Review of Geometrical Approaches and Analytical Integration for Chen’s System," Mathematics, MDPI, vol. 8(9), pages 1-14, September.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1530-:d:410297
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/9/1530/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/9/1530/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Camelia Pop & Camelia Petrişor & Dumitru Bălă, 2011. "Hamilton-Poisson Realizations for the Lü System," Mathematical Problems in Engineering, Hindawi, vol. 2011, pages 1-13, March.
    2. Li, Guo-Hui, 2007. "Generalized projective synchronization between Lorenz system and Chen’s system," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1454-1458.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yuhua & Zhou, Wuneng & Fang, Jian-an, 2009. "Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lü chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1305-1315.
    2. Mahmoud, Emad E., 2013. "Modified projective phase synchronization of chaotic complex nonlinear systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 89(C), pages 69-85.
    3. Runzi, Luo & Zhengmin, Wei, 2009. "Adaptive function projective synchronization of unified chaotic systems with uncertain parameters," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1266-1272.
    4. Mahmoud, Gamal M. & Mahmoud, Emad E., 2010. "Synchronization and control of hyperchaotic complex Lorenz system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(12), pages 2286-2296.
    5. Remus-Daniel Ene & Nicolina Pop, 2023. "Optimal Homotopy Asymptotic Method for an Anharmonic Oscillator: Application to the Chen System," Mathematics, MDPI, vol. 11(5), pages 1-14, February.
    6. Sun, Junwei & Guo, Jinchao & Yang, Cunxiang & Zheng, Anping & Zhang, Xuncai, 2015. "Adaptive generalized hybrid function projective dislocated synchronization of new four-dimensional uncertain chaotic systems," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 304-314.
    7. Du, Hongyue & Zeng, Qingshuang & Wang, Changhong, 2009. "Modified function projective synchronization of chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2399-2404.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1530-:d:410297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.