IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i6p1013-d374113.html
   My bibliography  Save this article

L p -Solution to the Random Linear Delay Differential Equation with a Stochastic Forcing Term

Author

Listed:
  • Juan Carlos Cortés

    (Instituto Universitario de Matemática Multidisciplinar, Building 8G, access C, 2nd floor, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain)

  • Marc Jornet

    (Instituto Universitario de Matemática Multidisciplinar, Building 8G, access C, 2nd floor, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain)

Abstract

This paper aims at extending a previous contribution dealing with the random autonomous-homogeneous linear differential equation with discrete delay τ > 0 , by adding a random forcing term f ( t ) that varies with time: x ′ ( t ) = a x ( t ) + b x ( t − τ ) + f ( t ) , t ≥ 0 , with initial condition x ( t ) = g ( t ) , − τ ≤ t ≤ 0 . The coefficients a and b are assumed to be random variables, while the forcing term f ( t ) and the initial condition g ( t ) are stochastic processes on their respective time domains. The equation is regarded in the Lebesgue space L p of random variables with finite p -th moment. The deterministic solution constructed with the method of steps and the method of variation of constants, which involves the delayed exponential function, is proved to be an L p -solution, under certain assumptions on the random data. This proof requires the extension of the deterministic Leibniz’s integral rule for differentiation to the random scenario. Finally, we also prove that, when the delay τ tends to 0, the random delay equation tends in L p to a random equation with no delay. Numerical experiments illustrate how our methodology permits determining the main statistics of the solution process, thereby allowing for uncertainty quantification.

Suggested Citation

  • Juan Carlos Cortés & Marc Jornet, 2020. "L p -Solution to the Random Linear Delay Differential Equation with a Stochastic Forcing Term," Mathematics, MDPI, vol. 8(6), pages 1-16, June.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:1013-:d:374113
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/6/1013/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/6/1013/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Caraballo, Tomás & Cortés, J.-C. & Navarro-Quiles, A., 2019. "Applying the random variable transformation method to solve a class of random linear differential equation with discrete delay," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 198-218.
    2. Denys Ya. Khusainov & Michael Pokojovy, 2015. "Solving the Linear 1D Thermoelasticity Equations with Pure Delay," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2015, pages 1-11, February.
    3. Francisco-José Santonja & Leonid Shaikhet, 2012. "Analysing Social Epidemics by Delayed Stochastic Models," Discrete Dynamics in Nature and Society, Hindawi, vol. 2012, pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kerr, Gilbert & González-Parra, Gilberto & Sherman, Michele, 2022. "A new method based on the Laplace transform and Fourier series for solving linear neutral delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    2. Kerr, Gilbert & González-Parra, Gilberto, 2022. "Accuracy of the Laplace transform method for linear neutral delay differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 308-326.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Yongshun & Li, Xiaodi & Cao, Jinde, 2020. "Global exponential stability for impulsive systems with infinite distributed delay based on flexible impulse frequency," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    2. Julia Calatayud & Juan Carlos Cortés & Marc Jornet & Francisco Rodríguez, 2020. "Mean Square Convergent Non-Standard Numerical Schemes for Linear Random Differential Equations with Delay," Mathematics, MDPI, vol. 8(9), pages 1-17, August.
    3. Xiaodi Li & A. Vinodkumar & T. Senthilkumar, 2019. "Exponential Stability Results on Random and Fixed Time Impulsive Differential Systems with Infinite Delay," Mathematics, MDPI, vol. 7(9), pages 1-22, September.
    4. Caraballo, Tomás & Cortés, J.-C. & Navarro-Quiles, A., 2019. "Applying the random variable transformation method to solve a class of random linear differential equation with discrete delay," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 198-218.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:1013-:d:374113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.