IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i12p2104-d450766.html
   My bibliography  Save this article

Solving Multi-Point Boundary Value Problems Using Sinc-Derivative Interpolation

Author

Listed:
  • Kenzu Abdella

    (Department of Mathematics, Statistics and Physics, Qatar University, Doha 2713, Qatar
    These authors contributed equally to this work.)

  • Jeet Trivedi

    (Department of Mathematics, Western University, London, ON N6A 5B7, Canada
    These authors contributed equally to this work.)

Abstract

In this paper, the Sinc-derivative collocation method is used to solve linear and nonlinear multi-point boundary value problems. This is done by interpolating the first derivative of the unknown variable via Sinc numerical methods and obtaining the desired solution through numerical integration of the interpolation and all higher order derivatives through successive differentiation of the interpolation. Non-homogeneous boundary conditions are reduced to homogeneous using suitable transformations. The efficiency and the accuracy of the method are tested using illustrative examples previously considered by other researchers who used different approaches. The results show the excellent performance of the Sinc-derivative collocation method.

Suggested Citation

  • Kenzu Abdella & Jeet Trivedi, 2020. "Solving Multi-Point Boundary Value Problems Using Sinc-Derivative Interpolation," Mathematics, MDPI, vol. 8(12), pages 1-14, November.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2104-:d:450766
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/12/2104/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/12/2104/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dehghan, Mehdi, 2006. "Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 71(1), pages 16-30.
    2. Mehdi Dehghan & Mehdi Tatari, 2006. "The use of Adomian decomposition method for solving problems in calculus of variations," Mathematical Problems in Engineering, Hindawi, vol. 2006, pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pathak, Maheshwar & Joshi, Pratibha & Nisar, Kottakkaran Sooppy, 2022. "Numerical study of generalized 2-D nonlinear Schrödinger equation using Kansa method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 186-198.
    2. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 240-248.
    3. Harendra Singh & Rajesh K. Pandey & Hari Mohan Srivastava, 2019. "Solving Non-Linear Fractional Variational Problems Using Jacobi Polynomials," Mathematics, MDPI, vol. 7(3), pages 1-24, February.
    4. Ghosh, Suchismita & Deb, Anish & Sarkar, Gautam, 2016. "Taylor series approach for function approximation using ‘estimated’ higher derivatives," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 89-101.
    5. Luo, Yidong, 2020. "Galerkin method with trigonometric basis on stable numerical differentiation," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    6. Dehghan, Mehdi & Saadatmandi, Abbas, 2009. "Variational iteration method for solving the wave equation subject to an integral conservation condition," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1448-1453.
    7. Dehghan, Mehdi & Shokri, Ali, 2008. "A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 700-715.
    8. Guo, Geyang & Lü, Shujuan & Liu, Bo, 2015. "Unconditional stability of alternating difference schemes with variable time steplengthes for dispersive equation," Applied Mathematics and Computation, Elsevier, vol. 262(C), pages 249-259.
    9. Mohammadi, Reza, 2018. "Smooth Quintic spline approximation for nonlinear Schrödinger equations with variable coefficients in one and two dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 204-215.
    10. Moghadam, Amin Abrishami & Soheili, Ali R. & Bagherzadeh, Amir Saboor, 2022. "Numerical solution of fourth-order BVPs by using Lidstone-collocation method," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    11. Wang, Hanquan & Ma, Xiu & Lu, Junliang & Gao, Wen, 2017. "An efficient time-splitting compact finite difference method for Gross–Pitaevskii equation," Applied Mathematics and Computation, Elsevier, vol. 297(C), pages 131-144.
    12. Dehghan, Mehdi & Mohebbi, Akbar, 2008. "High-order compact boundary value method for the solution of unsteady convection–diffusion problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 683-699.
    13. Dehghan, Mehdi & Gharibi, Zeinab, 2021. "Numerical analysis of fully discrete energy stable weak Galerkin finite element Scheme for a coupled Cahn-Hilliard-Navier-Stokes phase-field model," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    14. Nehad Ali Shah & Ioannis Dassios & Essam R. El-Zahar & Jae Dong Chung & Somaye Taherifar, 2021. "The Variational Iteration Transform Method for Solving the Time-Fractional Fornberg–Whitham Equation and Comparison with Decomposition Transform Method," Mathematics, MDPI, vol. 9(2), pages 1-14, January.
    15. Shi, Dongyang & Liao, Xin & Wang, Lele, 2016. "Superconvergence analysis of conforming finite element method for nonlinear Schrödinger equation," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 298-310.
    16. Gao, Yali & Mei, Liquan & Li, Rui, 2018. "Galerkin methods for the Davey–Stewartson equations," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 144-161.
    17. Leonard Dăuş & Ghiocel Groza & Marilena Jianu, 2022. "Full Hermite Interpolation and Approximation in Topological Fields," Mathematics, MDPI, vol. 10(11), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2104-:d:450766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.