IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i5p407-d228974.html
   My bibliography  Save this article

Evaluation of Fractional Integrals and Derivatives of Elementary Functions: Overview and Tutorial

Author

Listed:
  • Roberto Garrappa

    (Department of Mathematics, University of Bari, Via E. Orabona 4, 70126 Bari, Italy
    Member of the INdAM Research Group GNCS, Istituto Nazionale di Alta Matematica “Francesco Severi”, Piazzale Aldo Moro 5, 00185 Rome, Italy)

  • Eva Kaslik

    (Department of Mathematics and Computer Science, West University of Timisoara, Bd. V. Parvan 4, 300223 Timisoara, Romania)

  • Marina Popolizio

    (Member of the INdAM Research Group GNCS, Istituto Nazionale di Alta Matematica “Francesco Severi”, Piazzale Aldo Moro 5, 00185 Rome, Italy
    Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E. Orabona 4, 70126 Bari, Italy)

Abstract

Several fractional-order operators are available and an in-depth knowledge of the selected operator is necessary for the evaluation of fractional integrals and derivatives of even simple functions. In this paper, we reviewed some of the most commonly used operators and illustrated two approaches to generalize integer-order derivatives to fractional order; the aim was to provide a tool for a full understanding of the specific features of each fractional derivative and to better highlight their differences. We hence provided a guide to the evaluation of fractional integrals and derivatives of some elementary functions and studied the action of different derivatives on the same function. In particular, we observed how Riemann–Liouville and Caputo’s derivatives converge, on long times, to the Grünwald–Letnikov derivative which appears as an ideal generalization of standard integer-order derivatives although not always useful for practical applications.

Suggested Citation

  • Roberto Garrappa & Eva Kaslik & Marina Popolizio, 2019. "Evaluation of Fractional Integrals and Derivatives of Elementary Functions: Overview and Tutorial," Mathematics, MDPI, vol. 7(5), pages 1-21, May.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:5:p:407-:d:228974
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/5/407/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/5/407/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mariusz Ciesielski & Tomasz Blaszczyk, 2018. "An Exact Solution of the Second-Order Differential Equation with the Fractional/Generalised Boundary Conditions," Advances in Mathematical Physics, Hindawi, vol. 2018, pages 1-9, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiri, Babak & Baleanu, Dumitru, 2023. "All linear fractional derivatives with power functions’ convolution kernel and interpolation properties," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    2. Virginia Kiryakova, 2020. "Unified Approach to Fractional Calculus Images of Special Functions—A Survey," Mathematics, MDPI, vol. 8(12), pages 1-35, December.
    3. Virginia Kiryakova, 2021. "A Guide to Special Functions in Fractional Calculus," Mathematics, MDPI, vol. 9(1), pages 1-40, January.
    4. Ngueuteu Mbouna, S.G. & Banerjee, Tanmoy & Yamapi, René & Woafo, Paul, 2022. "Diverse chimera and symmetry-breaking patterns induced by fractional derivation effect in a network of Stuart-Landau oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    5. Ruslan Abdulkadirov & Pavel Lyakhov & Nikolay Nagornov, 2023. "Survey of Optimization Algorithms in Modern Neural Networks," Mathematics, MDPI, vol. 11(11), pages 1-37, May.
    6. Enrica Pirozzi, 2022. "On a Fractional Stochastic Risk Model with a Random Initial Surplus and a Multi-Layer Strategy," Mathematics, MDPI, vol. 10(4), pages 1-18, February.
    7. Daniele Mortari & Roberto Garrappa & Luigi Nicolò, 2023. "Theory of Functional Connections Extended to Fractional Operators," Mathematics, MDPI, vol. 11(7), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:5:p:407-:d:228974. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.