IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i3p217-d209143.html
   My bibliography  Save this article

Robust H ∞ Control For Uncertain Singular Neutral Time-Delay Systems

Author

Listed:
  • Yuhong Huo

    (School of Finance and Mathematics, Huainan Normal University, Dongshanxi Street, Tianjiaan Dist., Huainan 232038, China)

  • Jia-Bao Liu

    (School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China)

Abstract

The present paper attempts to investigate the problem of robust H ∞ control for a class of uncertain singular neutral time-delay systems. First, a linear matrix inequality (LMI) is proposed to give a generalized asymptotically stability condition and an H ∞ norm condition for singular neutral time-delay systems. Second, the LMI is utilized to solve the robust H ∞ problem for singular neutral time-delay systems, and a state feedback control law verifies the solution. Finally, four theorems are formulated in terms of a matrix equation and linear matrix inequalities.

Suggested Citation

  • Yuhong Huo & Jia-Bao Liu, 2019. "Robust H ∞ Control For Uncertain Singular Neutral Time-Delay Systems," Mathematics, MDPI, vol. 7(3), pages 1-13, February.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:3:p:217-:d:209143
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/3/217/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/3/217/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Bo & Yan, Juan & Cheng, Jun & Zhong, Shouming, 2017. "New criteria of stability analysis for generalized neural networks subject to time-varying delayed signals," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 322-333.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Kun & Zhang, Huaguang & Mu, Yunfei & Sun, Shaoxin, 2019. "Tracking control optimization scheme for a class of partially unknown fuzzy systems by using integral reinforcement learning architecture," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 344-356.
    2. R. Sakthivel & V. Nithya & Yong-Ki Ma & Chao Wang, 2018. "Finite-Time Nonfragile Dissipative Filter Design for Wireless Networked Systems with Sensor Failures," Complexity, Hindawi, vol. 2018, pages 1-13, October.
    3. Shan, Yaonan & She, Kun & Zhong, Shouming & Zhong, Qishui & Shi, Kaibo & Zhao, Can, 2018. "Exponential stability and extended dissipativity criteria for generalized discrete-time neural networks with additive time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 145-168.
    4. Zhang, Dian & Cheng, Jun & Ki Ahn, Choon & Ni, Hongjie, 2019. "A flexible terminal approach to stochastic stability and stabilization of continuous-time semi-Markovian jump systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 191-205.
    5. Shi, Shuang & Fei, Zhongyang & Shi, Zhenpeng & Ren, Shunqing, 2018. "Stability and stabilization for discrete-time switched systems with asynchronism," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 520-536.
    6. Wei Kang & Hao Chen & Kaibo Shi & Jun Cheng, 2018. "Further Results on Reachable Set Bounding for Discrete-Time System with Time-Varying Delay and Bounded Disturbance Inputs," Complexity, Hindawi, vol. 2018, pages 1-11, March.
    7. Xie, Wenqian & Zhu, Hong & Zhong, Shouming & Zhang, Dian & Shi, Kaibo & Cheng, Jun, 2018. "Extended dissipative estimator design for uncertain switched delayed neural networks via a novel triple integral inequality," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 82-102.
    8. Long, Shaohua & Wu, Yunlong & Zhong, Shouming & Zhang, Dian, 2018. "Stability analysis for a class of neutral type singular systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 113-131.
    9. Zeng, Deqiang & Zhang, Ruimei & Liu, Xinzhi & Zhong, Shouming & Shi, Kaibo, 2018. "Pinning stochastic sampled-data control for exponential synchronization of directed complex dynamical networks with sampled-data communications," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 102-118.
    10. Wang, Jun & Shi, Kaibo & Huang, Qinzhen & Zhong, Shouming & Zhang, Dian, 2018. "Stochastic switched sampled-data control for synchronization of delayed chaotic neural networks with packet dropout," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 211-230.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:3:p:217-:d:209143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.