IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v6y2018i5p66-d143788.html
   My bibliography  Save this article

Effects of Viral and Cytokine Delays on Dynamics of Autoimmunity

Author

Listed:
  • Farzad Fatehi

    (Department of Mathematics, University of Sussex, Brighton BN1 9QH, UK)

  • Yuliya N. Kyrychko

    (Department of Mathematics, University of Sussex, Brighton BN1 9QH, UK)

  • Konstantin B. Blyuss

    (Department of Mathematics, University of Sussex, Brighton BN1 9QH, UK)

Abstract

A major contribution to the onset and development of autoimmune disease is known to come from infections. An important practical problem is identifying the precise mechanism by which the breakdown of immune tolerance as a result of immune response to infection leads to autoimmunity. In this paper, we develop a mathematical model of immune response to a viral infection, which includes T cells with different activation thresholds, regulatory T cells (Tregs), and a cytokine mediating immune dynamics. Particular emphasis is made on the role of time delays associated with the processes of infection and mounting the immune response. Stability analysis of various steady states of the model allows us to identify parameter regions associated with different types of immune behaviour, such as, normal clearance of infection, chronic infection, and autoimmune dynamics. Numerical simulations are used to illustrate different dynamical regimes, and to identify basins of attraction of different dynamical states. An important result of the analysis is that not only the parameters of the system, but also the initial level of infection and the initial state of the immune system determine the progress and outcome of the dynamics.

Suggested Citation

  • Farzad Fatehi & Yuliya N. Kyrychko & Konstantin B. Blyuss, 2018. "Effects of Viral and Cytokine Delays on Dynamics of Autoimmunity," Mathematics, MDPI, vol. 6(5), pages 1-24, April.
  • Handle: RePEc:gam:jmathe:v:6:y:2018:i:5:p:66-:d:143788
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/6/5/66/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/6/5/66/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francomano, Elisa & Hilker, Frank M. & Paliaga, Marta & Venturino, Ezio, 2018. "Separatrix reconstruction to identify tipping points in an eco-epidemiological model," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 80-91.
    2. Irena Stefanová & Jeffrey R. Dorfman & Ronald N. Germain, 2002. "Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes," Nature, Nature, vol. 420(6914), pages 429-434, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francomano, Elisa & Paliaga, Marta, 2020. "A normalized iterative Smoothed Particle Hydrodynamics method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 176(C), pages 171-180.
    2. Gabrick, Enrique C. & Sayari, Elaheh & Protachevicz, Paulo R. & Szezech, José D. & Iarosz, Kelly C. & de Souza, Silvio L.T. & Almeida, Alexandre C.L. & Viana, Ricardo L. & Caldas, Iberê L. & Batista, , 2023. "Unpredictability in seasonal infectious diseases spread," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    3. Francomano, E. & Paliaga, M., 2018. "Highlighting numerical insights of an efficient SPH method," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 899-915.
    4. Antonelli, L. & Francomano, E. & Gregoretti, F., 2021. "A CUDA-based implementation of an improved SPH method on GPU," Applied Mathematics and Computation, Elsevier, vol. 409(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:6:y:2018:i:5:p:66-:d:143788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.