IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i8p1264-d1632928.html
   My bibliography  Save this article

Predictive Maintenance for Cutter System of Roller Laminator

Author

Listed:
  • Ssu-Han Chen

    (Department of Industrial Engineering and Management, Ming Chi University of Technology, New Taipei City 243303, Taiwan
    Center for Artificial Intelligence & Data Science, Ming Chi University of Technology, New Taipei City 243303, Taiwan)

  • Chen-Wei Wang

    (Department of Industrial Engineering and Management, Ming Chi University of Technology, New Taipei City 243303, Taiwan)

  • Andres Philip Mayol

    (Manufacturing Engineering and Management Department, De La Salle University, Manila 0922, Philippines
    Center for Engineering and Sustainable Development Research, De La Salle University, Manila 0922, Philippines)

  • Chia-Ming Jan

    (Metal Industries Research & Development Centre, Kaohsiung City 811, Taiwan)

  • Tzu-Yi Yang

    (Department of Foreign Languages and Literature, National Ilan University, Ilan 260007, Taiwan)

Abstract

In the era of Industry 4.0, equipment maintenance is shifting toward data-driven strategies. Traditional methods rely on usage time or cycle counts to estimate component lifespan. This often causes early replacement of parts, leading to increased production costs. This study focuses on the cutter system of a roller laminator used in printed circuit board (PCB) manufacturing. An accelerometer is used to collect vibration signals under normal and abnormal states. Fast Fourier transform (FFT) is used to convert time-domain data into the frequency domain, then key statistical features from critical frequency bands are extracted as independent variables. The study applies logistic regression (LR), random forest (RF), and support vector machine (SVM) for predictive modeling of the cutting tool’s condition. The results show that the prediction accuracies of these models are 87.55%, 93.77%, and 94.94%, respectively, with SVM performing the best.

Suggested Citation

  • Ssu-Han Chen & Chen-Wei Wang & Andres Philip Mayol & Chia-Ming Jan & Tzu-Yi Yang, 2025. "Predictive Maintenance for Cutter System of Roller Laminator," Mathematics, MDPI, vol. 13(8), pages 1-17, April.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:8:p:1264-:d:1632928
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/8/1264/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/8/1264/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shrinathan Esakimuthu Pandarakone & Yukio Mizuno & Hisahide Nakamura, 2019. "A Comparative Study between Machine Learning Algorithm and Artificial Intelligence Neural Network in Detecting Minor Bearing Fault of Induction Motors," Energies, MDPI, vol. 12(11), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wagner Fontes Godoy & Daniel Morinigo-Sotelo & Oscar Duque-Perez & Ivan Nunes da Silva & Alessandro Goedtel & Rodrigo Henrique Cunha Palácios, 2020. "Estimation of Bearing Fault Severity in Line-Connected and Inverter-Fed Three-Phase Induction Motors," Energies, MDPI, vol. 13(13), pages 1-17, July.
    2. Bing Liu & Jichong Lei & Jinsen Xie & Jianliang Zhou, 2022. "Development and Validation of a Nuclear Power Plant Fault Diagnosis System Based on Deep Learning," Energies, MDPI, vol. 15(22), pages 1-15, November.
    3. Muhammad Zuhaib & Faraz Ahmed Shaikh & Wajiha Tanweer & Abdullah M. Alnajim & Saleh Alyahya & Sheroz Khan & Muhammad Usman & Muhammad Islam & Mohammad Kamrul Hasan, 2022. "Faults Feature Extraction Using Discrete Wavelet Transform and Artificial Neural Network for Induction Motor Availability Monitoring—Internet of Things Enabled Environment," Energies, MDPI, vol. 15(21), pages 1-32, October.
    4. Jordi Burriel-Valencia & Ruben Puche-Panadero & Javier Martinez-Roman & Angel Sapena-Baño & Martin Riera-Guasp & Manuel Pineda-Sánchez, 2019. "Multi-Band Frequency Window for Time-Frequency Fault Diagnosis of Induction Machines," Energies, MDPI, vol. 12(17), pages 1-18, August.
    5. Andre S. Barcelos & Antonio J. Marques Cardoso, 2021. "Current-Based Bearing Fault Diagnosis Using Deep Learning Algorithms," Energies, MDPI, vol. 14(9), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:8:p:1264-:d:1632928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.