IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2105-d236397.html
   My bibliography  Save this article

A Comparative Study between Machine Learning Algorithm and Artificial Intelligence Neural Network in Detecting Minor Bearing Fault of Induction Motors

Author

Listed:
  • Shrinathan Esakimuthu Pandarakone

    (Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan)

  • Yukio Mizuno

    (Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan)

  • Hisahide Nakamura

    (Research and Development Division, TOENEC Corporation, Nagoya 457-0819, Japan)

Abstract

Most of the mechanical systems in industries are made to run through induction motors (IM). To maintain the performance of the IM, earlier detection of minor fault and continuous monitoring (CM) are required. Among IM faults, bearing faults are considered as indispensable because of its high probability incidence nature. CM mainly depends upon signal processing and fault detection techniques. In recent decades, various methods have been involved in detecting the bearing fault using machine learning (ML) algorithms. Additionally, the role of artificial intelligence (AI), a growing technology, has also been used in fault diagnosis of IM. Taking the necessity of minor fault detection and the detailed study about the role of ML and AI to detect the bearing fault, the present study is performed. A comprehensive study is conducted by considering various diagnosis methods from ML and AI for detecting a minor bearing fault (hole and scratch). This study helps in understanding the difference between the diagnosis approach and their effectiveness in detecting an IM bearing fault. It is accomplished through FFT (fast Fourier transform) analysis of the load current and the extracted features are used to train the algorithm. The application is extended by comparing the result of ML and AI, and then explaining the specific purpose of use.

Suggested Citation

  • Shrinathan Esakimuthu Pandarakone & Yukio Mizuno & Hisahide Nakamura, 2019. "A Comparative Study between Machine Learning Algorithm and Artificial Intelligence Neural Network in Detecting Minor Bearing Fault of Induction Motors," Energies, MDPI, vol. 12(11), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2105-:d:236397
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2105/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2105/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andre S. Barcelos & Antonio J. Marques Cardoso, 2021. "Current-Based Bearing Fault Diagnosis Using Deep Learning Algorithms," Energies, MDPI, vol. 14(9), pages 1-14, April.
    2. Wagner Fontes Godoy & Daniel Morinigo-Sotelo & Oscar Duque-Perez & Ivan Nunes da Silva & Alessandro Goedtel & Rodrigo Henrique Cunha Palácios, 2020. "Estimation of Bearing Fault Severity in Line-Connected and Inverter-Fed Three-Phase Induction Motors," Energies, MDPI, vol. 13(13), pages 1-17, July.
    3. Bing Liu & Jichong Lei & Jinsen Xie & Jianliang Zhou, 2022. "Development and Validation of a Nuclear Power Plant Fault Diagnosis System Based on Deep Learning," Energies, MDPI, vol. 15(22), pages 1-15, November.
    4. Muhammad Zuhaib & Faraz Ahmed Shaikh & Wajiha Tanweer & Abdullah M. Alnajim & Saleh Alyahya & Sheroz Khan & Muhammad Usman & Muhammad Islam & Mohammad Kamrul Hasan, 2022. "Faults Feature Extraction Using Discrete Wavelet Transform and Artificial Neural Network for Induction Motor Availability Monitoring—Internet of Things Enabled Environment," Energies, MDPI, vol. 15(21), pages 1-32, October.
    5. Jordi Burriel-Valencia & Ruben Puche-Panadero & Javier Martinez-Roman & Angel Sapena-Baño & Martin Riera-Guasp & Manuel Pineda-Sánchez, 2019. "Multi-Band Frequency Window for Time-Frequency Fault Diagnosis of Induction Machines," Energies, MDPI, vol. 12(17), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2105-:d:236397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.