IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i8p1257-d1632708.html
   My bibliography  Save this article

Ninth-Order Two-Step Methods with Varying Step Lengths

Author

Listed:
  • Rubayyi T. Alqahtani

    (Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia)

  • Theodore E. Simos

    (Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, West Mishref 32093, Kuwait)

  • Charalampos Tsitouras

    (General Department, National & Kapodistrian University of Athens, GR34-400 Euripus Campus, Greece)

Abstract

This study investigates a widely recognized ninth-order numerical technique within the explicit two-step family of methods (a.k.a. hybrid Numerov-type methods). To boost its performance, we incorporate an economical step-size control algorithm that, after each iteration, either preserves the current step length, reduces it by half, or doubles it. Any additional off-grid points needed by this strategy are computed using a local interpolation routine. Indicative numerical experiments confirm the substantial efficiency gains realized by this method. It is particularly adept at resolving differential equations with oscillatory dynamics, delivering high precision with fewer function evaluations. Furthermore, a detailed Mathematica implementation is supplied, enhancing usability and fostering further research in the field. By simultaneously improving computational efficiency and accuracy, this work offers a significant contribution to the numerical analysis community.

Suggested Citation

  • Rubayyi T. Alqahtani & Theodore E. Simos & Charalampos Tsitouras, 2025. "Ninth-Order Two-Step Methods with Varying Step Lengths," Mathematics, MDPI, vol. 13(8), pages 1-15, April.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:8:p:1257-:d:1632708
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/8/1257/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/8/1257/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ch. TSITOURAS, 2006. "Explicit Eighth Order Two-Step Methods With Nine Stages For Integrating Oscillatory Problems," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 17(06), pages 861-876.
    2. Obaid Alshammari & Sondess Ben Aoun & Mourad Kchaou & Theodore E. Simos & Charalampos Tsitouras & Houssem Jerbi, 2024. "Eighth-Order Numerov-Type Methods Using Varying Step Length," Mathematics, MDPI, vol. 12(14), pages 1-14, July.
    3. J. M. Franco & L. Rández, 2018. "Eighth-order explicit two-step hybrid methods with symmetric nodes and weights for solving orbital and oscillatory IVPs," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 29(01), pages 1-18, January.
    4. Franco, J.M. & Rández, L., 2016. "Explicit exponentially fitted two-step hybrid methods of high order for second-order oscillatory IVPs," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 493-505.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladislav N. Kovalnogov & Ruslan V. Fedorov & Andrey V. Chukalin & Theodore E. Simos & Charalampos Tsitouras, 2021. "Eighth Order Two-Step Methods Trained to Perform Better on Keplerian-Type Orbits," Mathematics, MDPI, vol. 9(23), pages 1-19, November.
    2. Obaid Alshammari & Sondess Ben Aoun & Mourad Kchaou & Theodore E. Simos & Charalampos Tsitouras & Houssem Jerbi, 2024. "Eighth-Order Numerov-Type Methods Using Varying Step Length," Mathematics, MDPI, vol. 12(14), pages 1-14, July.
    3. Vladislav N. Kovalnogov & Ruslan V. Fedorov & Tamara V. Karpukhina & Theodore E. Simos & Charalampos Tsitouras, 2021. "Sixth Order Numerov-Type Methods with Coefficients Trained to Perform Best on Problems with Oscillating Solutions," Mathematics, MDPI, vol. 9(21), pages 1-12, October.
    4. Tsitouras, Ch., 2014. "On fitted modifications of Runge–Kutta–Nyström pairs," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 416-423.
    5. Theodore E. Simos, 2024. "A New Methodology for the Development of Efficient Multistep Methods for First-Order IVPs with Oscillating Solutions," Mathematics, MDPI, vol. 12(4), pages 1-32, February.
    6. Lee, K.C. & Nazar, R. & Senu, N. & Ahmadian, A., 2024. "A promising exponentially-fitted two-derivative Runge–Kutta–Nyström method for solving y′′=f(x,y): Application to Verhulst logistic growth model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 28-49.
    7. Higinio Ramos & Ridwanulahi Abdulganiy & Ruth Olowe & Samuel Jator, 2021. "A Family of Functionally-Fitted Third Derivative Block Falkner Methods for Solving Second-Order Initial-Value Problems with Oscillating Solutions," Mathematics, MDPI, vol. 9(7), pages 1-22, March.
    8. Changbum Chun & Beny Neta, 2019. "Trigonometrically-Fitted Methods: A Review," Mathematics, MDPI, vol. 7(12), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:8:p:1257-:d:1632708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.