IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i3p352-d1573869.html
   My bibliography  Save this article

On the Martínez–Kaabar Fractal–Fractional Reduced Pukhov Differential Transformation and Its Applications

Author

Listed:
  • Francisco Martínez

    (Department of Applied Mathematics and Statistics, Technological University of Cartagena, 30203 Cartagena, Spain)

  • Mohammed K. A. Kaabar

    (Institute of Mathematical Sciences, Faculty of Science, University Malaya, Kuala Lumpur 50603, Malaysia)

Abstract

This paper addresses the extension of the Martinez–Kaabar fractal–fractional calculus (simply expressed as MK calculus) to the context of reduced differential transformation, with applications to the solution of some partial differential equations. Since this differential transformation is derived from the Taylor series expansion of real-valued functions of several variables, it is necessary to develop this theory in the context of such functions. Firstly, classical elements of the analysis of functions of several real variables are introduced, such as the concept of partial derivative and Clairaut’s theorem, in terms of the MK partial α , γ -derivative. Next, we establish the fractal–fractional (FrFr) Taylor formula with Lagrange residue and discuss a sufficient condition for a function of class C α , γ ∞ on an open and bounded set D ⊂ R 2 to be expanded into a convergent infinite series, the so-called FrFr Taylor series. The theoretical study is completed by defining the FrFr reduced differential transformation and establishing its fundamental properties, which will allow the construction of the FrFr reduced Pukhov differential transformation method (FrFrRPDTM). Based on the previous results, this new technique is applied to solve interesting non-integer order linear and non-linear partial differential equations that incorporate the fractal effect. Finally, the results show that the FrFrRPDTM represents a simple instrument that provides a direct, efficient, and effective solution to problems involving this class of partial differential equations.

Suggested Citation

  • Francisco Martínez & Mohammed K. A. Kaabar, 2025. "On the Martínez–Kaabar Fractal–Fractional Reduced Pukhov Differential Transformation and Its Applications," Mathematics, MDPI, vol. 13(3), pages 1-21, January.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:352-:d:1573869
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/3/352/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/3/352/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Abu-Shady & Mohammed K. A. Kaabar, 2021. "A Generalized Definition of the Fractional Derivative with Applications," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-9, October.
    2. Atangana, Abdon, 2017. "Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 396-406.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farman, Muhammad & Ahmad, Aqeel & Zehra, Anum & Nisar, Kottakkaran Sooppy & Hincal, Evren & Akgul, Ali, 2024. "Analysis and controllability of diabetes model for experimental data by using fractional operator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 133-148.
    2. Jiong Weng & Xiaojing Liu & Youhe Zhou & Jizeng Wang, 2022. "An Explicit Wavelet Method for Solution of Nonlinear Fractional Wave Equations," Mathematics, MDPI, vol. 10(21), pages 1-14, October.
    3. Dlamini, A. & Doungmo Goufo, E.F., 2023. "Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    4. Sabermahani, Sedigheh & Ordokhani, Yadollah & Rahimkhani, Parisa, 2023. "Application of generalized Lucas wavelet method for solving nonlinear fractal-fractional optimal control problems," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    5. Ali, Zeeshan & Rabiei, Faranak & Hosseini, Kamyar, 2023. "A fractal–fractional-order modified Predator–Prey mathematical model with immigrations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 466-481.
    6. Deniz, Sinan, 2021. "Optimal perturbation iteration method for solving fractional FitzHugh-Nagumo equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Omaba, McSylvester Ejighikeme, 2021. "Growth moment, stability and asymptotic behaviours of solution to a class of time-fractal-fractional stochastic differential equation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    8. Atangana, Abdon, 2020. "Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    9. Goufo, Emile F. Doungmo, 2021. "On the fractal dynamics for higher order traveling waves," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    10. M. B. Almatrafi, 2024. "Solitary Wave Solutions to a Fractional-Order Fokas Equation via the Improved Modified Extended Tanh-Function Approach," Mathematics, MDPI, vol. 13(1), pages 1-17, December.
    11. Songkran Pleumpreedaporn & Chanidaporn Pleumpreedaporn & Jutarat Kongson & Chatthai Thaiprayoon & Jehad Alzabut & Weerawat Sudsutad, 2022. "Dynamical Analysis of Nutrient-Phytoplankton-Zooplankton Model with Viral Disease in Phytoplankton Species under Atangana-Baleanu-Caputo Derivative," Mathematics, MDPI, vol. 10(9), pages 1-33, May.
    12. Torres-Hernandez, A. & Brambila-Paz, F. & Montufar-Chaveznava, R., 2022. "Acceleration of the order of convergence of a family of fractional fixed-point methods and its implementation in the solution of a nonlinear algebraic system related to hybrid solar receivers," Applied Mathematics and Computation, Elsevier, vol. 429(C).
    13. Li, Zhongfei & Liu, Zhuang & Khan, Muhammad Altaf, 2020. "Fractional investigation of bank data with fractal-fractional Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    14. Imran, M.A., 2020. "Application of fractal fractional derivative of power law kernel (FFP0Dxα,β) to MHD viscous fluid flow between two plates," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    15. Kumar, Ajay & Kumar, Sunil & Momani, Shaher & Hadid, Samir, 2024. "A chaos study of fractal–fractional predator–prey model of mathematical ecology," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 857-888.
    16. Kumar, Pushpendra & Erturk, Vedat Suat, 2021. "Environmental persistence influences infection dynamics for a butterfly pathogen via new generalised Caputo type fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    17. Serkan Araci & Gauhar Rahman & Abdul Ghaffar & Azeema & Kottakkaran Sooppy Nisar, 2019. "Fractional Calculus of Extended Mittag-Leffler Function and Its Applications to Statistical Distribution," Mathematics, MDPI, vol. 7(3), pages 1-14, March.
    18. Yong Tang, 2023. "Traveling Wave Optical Solutions for the Generalized Fractional Kundu–Mukherjee–Naskar (gFKMN) Model," Mathematics, MDPI, vol. 11(11), pages 1-12, June.
    19. Saqib, Muhammad & Khan, Ilyas & Shafie, Sharidan, 2018. "Application of Atangana–Baleanu fractional derivative to MHD channel flow of CMC-based-CNT's nanofluid through a porous medium," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 79-85.
    20. Ravi Kanth, A.S.V. & Devi, Sangeeta, 2022. "A computational approach for numerical simulations of the fractal–fractional autoimmune disease model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:352-:d:1573869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.