IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i15p2532-d1719083.html
   My bibliography  Save this article

Some Calibration Estimators of the Mean of a Sensitive Variable Under Measurement Error

Author

Listed:
  • Sat Gupta

    (Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC 27412, USA)

  • Pidugu Trisandhya

    (Department of Applied Sciences, Bharati Vidyapeeth’s College of Engineering, New Delhi 110063, India)

  • Frank Coolen

    (Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK)

Abstract

This study explores the estimation of the mean of a sensitive variable using calibration estimators under measurement error. Three randomized response techniques are evaluated: Partial Randomized Response Technique, Compulsory Randomized Response Technique, and Optional Randomized Response Technique. Theoretical properties of the proposed estimators are analyzed, and a simulation study using real COVID-19 infection data is conducted. Results indicate that the Optional Randomized Response Technique outperforms Partial Randomized Response Technique and Compulsory Randomized Response Technique in terms of efficiency, underscoring its effectiveness and practical utility for improving data quality in sensitive survey settings.

Suggested Citation

  • Sat Gupta & Pidugu Trisandhya & Frank Coolen, 2025. "Some Calibration Estimators of the Mean of a Sensitive Variable Under Measurement Error," Mathematics, MDPI, vol. 13(15), pages 1-13, August.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:15:p:2532-:d:1719083
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/15/2532/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/15/2532/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kuo-Chung Huang, 2008. "Estimation for sensitive characteristics using optional randomized response technique," Quality & Quantity: International Journal of Methodology, Springer, vol. 42(5), pages 679-686, October.
    2. Timothy G. Gregoire & Christian Salas, 2009. "Ratio Estimation with Measurement Error in the Auxiliary Variate," Biometrics, The International Biometric Society, vol. 65(2), pages 590-598, June.
    3. Antonio Arcos & María del Rueda & Sarjinder Singh, 2015. "A generalized approach to randomised response for quantitative variables," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 1239-1256, May.
    4. Giancarlo Diana & Pier Perri, 2011. "A class of estimators for quantitative sensitive data," Statistical Papers, Springer, vol. 52(3), pages 633-650, August.
    5. Sanghamitra Pal, 2008. "Unbiasedly estimating the total of a stigmatizing variable from a complex survey on permitting options for direct or randomized responses," Statistical Papers, Springer, vol. 49(2), pages 157-164, April.
    6. James Abernathy & Bernard Greenberg & Daniel Horvitz, 1970. "Estimates of induced abortion in urban North Carolina," Demography, Springer;Population Association of America (PAA), vol. 7(1), pages 19-29, February.
    7. Shaul K. Bar-Lev & Elizabeta Bobovitch & Benzion Boukai, 2004. "A note on randomized response models for quantitative data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 60(3), pages 255-260, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. María del Mar García Rueda & Pier Francesco Perri & Beatriz Rodríguez Cobo, 2018. "Advances in estimation by the item sum technique using auxiliary information in complex surveys," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(3), pages 455-478, July.
    2. María del Mar Rueda & Beatriz Cobo & Antonio Arcos, 2021. "Regression Models in Complex Survey Sampling for Sensitive Quantitative Variables," Mathematics, MDPI, vol. 9(6), pages 1-13, March.
    3. Kumari Priyanka & Pidugu Trisandhya, 2019. "Modelling Sensitive Issues On Successive Waves," Statistics in Transition New Series, Polish Statistical Association, vol. 20(1), pages 41-65, March.
    4. Priyanka Kumari & Trisandhya Pidugu, 2019. "Modelling Sensitive Issues On Successive Waves," Statistics in Transition New Series, Statistics Poland, vol. 20(1), pages 41-65, March.
    5. Muhammad Azeem & Sidra Ali, 2023. "A neutral comparative analysis of additive, multiplicative, and mixed quantitative randomized response models," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-11, April.
    6. Horng-Jinh Chang & Mei-Pei Kuo, 2012. "Estimation of population proportion in randomized response sampling using weighted confidence interval construction," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 655-672, July.
    7. Sanghamitra Pal & Arijit Chaudhuri & Dipika Patra, 2020. "How privacy may be protected in optional randomized response surveys," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 61-87, June.
    8. Muhammad Azeem & Sundus Hussain & Musarrat Ijaz & Najma Salahuddin, 2024. "An improved quantitative randomized response technique for data collection in sensitive surveys," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(1), pages 329-341, February.
    9. Antonio Arcos & María del Rueda & Sarjinder Singh, 2015. "A generalized approach to randomised response for quantitative variables," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 1239-1256, May.
    10. Mausumi Bose, 2015. "Respondent privacy and estimation efficiency in randomized response surveys for discrete-valued sensitive variables," Statistical Papers, Springer, vol. 56(4), pages 1055-1069, November.
    11. Coutts Elisabethen & Jann Ben & Krumpal Ivar & Näher Anatol-Fiete, 2011. "Plagiarism in Student Papers: Prevalence Estimates Using Special Techniques for Sensitive Questions," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(5-6), pages 749-760, October.
    12. Lucio Barabesi & Giancarlo Diana & Pier Perri, 2013. "Design-based distribution function estimation for stigmatized populations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(7), pages 919-935, October.
    13. Oluseun Odumade & Sarjinder Singh, 2010. "An Alternative to the Bar-Lev, Bobovitch, and Boukai Randomized Response Model," Sociological Methods & Research, , vol. 39(2), pages 206-221, November.
    14. David Makowski & Rémi Bancal & Arnaud Bensadoun & Hervé Monod & Antoine Messéan, 2017. "Sampling Strategies for Evaluating the Rate of Adventitious Transgene Presence in Non‐Genetically Modified Crop Fields," Risk Analysis, John Wiley & Sons, vol. 37(9), pages 1693-1705, September.
    15. Kuo-Chung Huang, 2010. "Unbiased estimators of mean, variance and sensitivity level for quantitative characteristics in finite population sampling," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 71(3), pages 341-352, May.
    16. Muhammad Azeem & Javid Shabbir & Najma Salahuddin & Sundus Hussain & Musarrat Ijaz, 2023. "A comparative study of randomized response techniques using separate and combined metrics of efficiency and privacy," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-15, October.
    17. Pier Francesco Perri & Beatriz Cobo Rodríguez & María del Mar Rueda García, 2018. "A mixed-mode sensitive research on cannabis use and sexual addiction: improving self-reporting by means of indirect questioning techniques," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(4), pages 1593-1611, July.
    18. Shen‐Ming Lee & Truong‐Nhat Le & Phuoc‐Loc Tran & Chin‐Shang Li, 2022. "Investigating the association of a sensitive attribute with a random variable using the Christofides generalised randomised response design and Bayesian methods," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1471-1502, November.
    19. Giancarlo Diana & Pier Francesco Perri, 2010. "New scrambled response models for estimating the mean of a sensitive quantitative character," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(11), pages 1875-1890.
    20. Sat Gupta & Michael Parker & Sadia Khalil, 2024. "A Ratio Estimator for the Mean Using a Mixture Optional Enhance Trust (MOET) Randomized Response Model," Mathematics, MDPI, vol. 12(22), pages 1-17, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:15:p:2532-:d:1719083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.