IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i14p2275-d1701968.html
   My bibliography  Save this article

Periodic Oscillatory Solutions for a Nonlinear Model with Multiple Delays

Author

Listed:
  • Chunhua Feng

    (Department of Mathematics and Computer Science, Alabama State University, Montgomery, AL 36104, USA)

Abstract

For systems such as the van der Pol and van der Pol–Duffing oscillators, the study of their oscillation is currently a very active area of research. Many authors have used the bifurcation method to try to determine oscillatory behavior. But when the system involves n separate delays, the equations for bifurcation become quite complex and difficult to deal with. In this paper, the existence of periodic oscillatory behavior was studied for a system consisting of n coupled equations with multiple delays. The method begins by rewriting the second-order system of differential equations as a larger first-order system. Then, the nonlinear system of first-order equations is linearized by disregarding higher-degree terms that are locally small. The instability of the trivial solution to the linearized equations implies the instability of the nonlinear equations. Periodic behavior often occurs when the system is unstable and bounded, so this paper also studied the boundedness here. It follows from previous work on the subject that the conditions here did result in periodic oscillatory behavior, and this is illustrated in the graphs of computer simulations.

Suggested Citation

  • Chunhua Feng, 2025. "Periodic Oscillatory Solutions for a Nonlinear Model with Multiple Delays," Mathematics, MDPI, vol. 13(14), pages 1-18, July.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:14:p:2275-:d:1701968
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/14/2275/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/14/2275/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Xindong & Zhang, Zhao, 2024. "Symmetric and asymmetric bursting oscillations in a hybrid van der Pol-Duffing-Rayleigh system," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    2. Fotsin, H.B. & Woafo, P., 2005. "Adaptive synchronization of a modified and uncertain chaotic Van der Pol-Duffing oscillator based on parameter identification," Chaos, Solitons & Fractals, Elsevier, vol. 24(5), pages 1363-1371.
    3. Nganso, E. Njinkeu & Mbouna, S.G. Ngueuteu & Yamapi, R. & Filatrella, G. & Kurths, J., 2023. "Two-attractor chimera and solitary states in a network of nonlocally coupled birhythmic van der Pol oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    4. Fotsin, Hilaire & Bowong, Samuel, 2006. "Adaptive control and synchronization of chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 822-835.
    5. Liqin Liu & Chunrui Zhang, 2023. "Multiple Hopf Bifurcations of Four Coupled van der Pol Oscillators with Delay," Mathematics, MDPI, vol. 11(23), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ngamsa Tegnitsap, J.V. & Fotsin, H.B. & Megam Ngouonkadi, E.B., 2021. "Magnetic coupling based control of a chaotic circuit: Case of the van der Pol oscillator coupled to a linear circuit," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Guerra, Fábio A. & Coelho, Leandro dos S., 2008. "Multi-step ahead nonlinear identification of Lorenz’s chaotic system using radial basis neural network with learning by clustering and particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 35(5), pages 967-979.
    3. Leutcho, Gervais Dolvis & Kengne, Jacques, 2018. "A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 275-293.
    4. Zhang, Ting & Wang, Jiang & Fei, Xiangyang & Deng, Bin, 2007. "Synchronization of coupled FitzHugh–Nagumo systems via MIMO feedback linearization control," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 194-202.
    5. He, Qie & Wang, Ling & Liu, Bo, 2007. "Parameter estimation for chaotic systems by particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 654-661.
    6. Kuetche Mbe, E.S. & Fotsin, H.B. & Kengne, J. & Woafo, P., 2014. "Parameters estimation based adaptive Generalized Projective Synchronization (GPS) of chaotic Chua’s circuit with application to chaos communication by parametric modulation," Chaos, Solitons & Fractals, Elsevier, vol. 61(C), pages 27-37.
    7. Chang, Wei-Der, 2006. "Parameter identification of Rossler’s chaotic system by an evolutionary algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 29(5), pages 1047-1053.
    8. Shen, Liqun & Wang, Mao, 2008. "Robust synchronization and parameter identification on a class of uncertain chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 106-111.
    9. Zhou, Jin & Cheng, Xuhua & Xiang, Lan & Zhang, Yecui, 2007. "Impulsive control and synchronization of chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 607-616.
    10. Peng, Bo & Liu, Bo & Zhang, Fu-Yi & Wang, Ling, 2009. "Differential evolution algorithm-based parameter estimation for chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2110-2118.
    11. Li, Ruihong & Xu, Wei & Li, Shuang, 2009. "Anti-synchronization on autonomous and non-autonomous chaotic systems via adaptive feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1288-1296.
    12. Vincent, U.E., 2008. "Synchronization of identical and non-identical 4-D chaotic systems using active control," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1065-1075.
    13. Elabbasy, E.M. & El-Dessoky, M.M., 2008. "Synchronization of van der Pol oscillator and Chen chaotic dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1425-1435.
    14. Zhang, Chaolong & Deng, Feiqi & Peng, Yunjian & Zhang, Bo, 2015. "Adaptive synchronization of Cohen–Grossberg neural network with mixed time-varying delays and stochastic perturbation," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 792-801.
    15. Fotsin, Hilaire & Bowong, Samuel & Daafouz, Jamal, 2005. "Adaptive synchronization of two chaotic systems consisting of modified Van der Pol–Duffing and Chua oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 26(1), pages 215-229.
    16. dos Santos Coelho, Leandro & Coelho, Antonio Augusto Rodrigues, 2009. "Model-free adaptive control optimization using a chaotic particle swarm approach," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2001-2009.
    17. Chen, Chang-Kuo & Lai, Tsung-Wen & Yan, Jun-Juh & Liao, Teh-Lu, 2009. "Synchronization of two chaotic systems: Dynamic compensator approach," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1055-1063.
    18. Sun, Fengyun & Zhao, Yi & Zhou, Tianshou, 2007. "Identify fully uncertain parameters and design controllers based on synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1677-1682.
    19. Fotsin, Hilaire & Bowong, Samuel, 2006. "Adaptive control and synchronization of chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 822-835.
    20. Yu, Wenwu & Cao, Jinde, 2007. "Adaptive synchronization and lag synchronization of uncertain dynamical system with time delay based on parameter identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 467-482.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:14:p:2275-:d:1701968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.