Author
Listed:
- Jin Yan
(School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, Macao, China)
- Yuling Huang
(School of Computer Science and Software, Zhaoqing University, Zhaoqing 526000, China)
Abstract
Accurate stock price prediction requires the integration of heterogeneous data streams, yet conventional techniques struggle to simultaneously leverage fine-grained micro-stock features and broader macroeconomic indicators. To address this gap, we propose MambaLLM, a novel framework that fuses macro-index and micro-stock inputs through the synergistic use of state-space models (SSMs) and large language models (LLMs). Our two-branch architecture comprises (i) Micro-Stock Encoder, a Mamba-based temporal encoder for processing granular stock-level data (prices, volumes, and technical indicators), and (ii) Macro-Index Analyzer, an LLM module—employing DeepSeek R1 7B distillation—capable of interpreting market-level index trends (e.g., S&P 500) to produce textual summaries. These summaries are then distilled into compact embeddings via FinBERT. By merging these multi-scale representations through a concatenation mechanism and subsequently refining them with multi-layer perceptrons (MLPs), MambaLLM dynamically captures both asset-specific price behavior and systemic market fluctuations. Extensive experiments on six major U.S. stocks (AAPL, AMZN, MSFT, TSLA, GOOGL, and META) reveal that MambaLLM delivers up to a 28.50% reduction in RMSE compared with suboptimal models, surpassing traditional recurrent neural networks and MAMBA-based baselines under volatile market conditions. This marked performance gain highlights the framework’s unique ability to merge structured financial time series with semantically rich macroeconomic narratives. Altogether, our findings underscore the scalability and adaptability of MambaLLM, offering a powerful, next-generation tool for financial forecasting and risk management.
Suggested Citation
Jin Yan & Yuling Huang, 2025.
"MambaLLM: Integrating Macro-Index and Micro-Stock Data for Enhanced Stock Price Prediction,"
Mathematics, MDPI, vol. 13(10), pages 1-25, May.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:10:p:1599-:d:1654973
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:10:p:1599-:d:1654973. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.