IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i23p4773-d1288083.html
   My bibliography  Save this article

Predicting Intensive Care Unit Patients’ Discharge Date with a Hybrid Machine Learning Model That Combines Length of Stay and Days to Discharge

Author

Listed:
  • David Cuadrado

    (Department of Computer Science and Mathematics, Universitat Rovira i Virgili, 43007 Tarragona, Spain)

  • Aida Valls

    (Department of Computer Science and Mathematics, Universitat Rovira i Virgili, 43007 Tarragona, Spain)

  • David Riaño

    (Department of Computer Science and Mathematics, Universitat Rovira i Virgili, 43007 Tarragona, Spain)

Abstract

Background: Accurate planning of the duration of stays at intensive care units is of utmost importance for resource planning. Currently, the discharge date used for resource management is calculated only at admission time and is called length of stay. However, the evolution of the treatment may be different from one patient to another, so a recalculation of the date of discharge should be performed, called days to discharge. The prediction of days to discharge during the stay at the ICU with statistical and data analysis methods has been poorly studied with low-quality results. This study aims to improve the prediction of the discharge date for any patient in intensive care units using artificial intelligence techniques. Methods: The paper proposes a hybrid method based on group-conditioned models obtained with machine learning techniques. Patients are grouped into three clusters based on an initial length of stay estimation. On each group (grouped by first days of stay), we calculate the group-conditioned length of stay value to know the predicted date of discharge, then, after a given number of days, another group-conditioned prediction model must be used to calculate the days to discharge in order to obtain a more accurate prediction of the number of remaining days. The study is performed with the eICU database, a public dataset of USA patients admitted to intensive care units between 2014 and 2015. Three machine learning methods (i.e., Random Forest, XGBoost, and lightGBM) are used to generate length of stay and days to discharge predictive models for each group. Results: Random Forest is the algorithm that obtains the best days to discharge predictors. The proposed hybrid method achieves a root mean square error (RMSE) and mean average error (MAE) below one day on the eICU dataset for the last six days of stay. Conclusions: Machine learning models improve quality of predictions for the days to discharge and length of stay for intensive care unit patients. The results demonstrate that the hybrid model, based on Random Forest, improves the accuracy for predicting length of stay at the start and days to discharge at the end of the intensive care unit stay. Implementing these prediction models may help in the accurate estimation of bed occupancy at intensive care units, thus improving the planning for these limited and critical health-care resources.

Suggested Citation

  • David Cuadrado & Aida Valls & David Riaño, 2023. "Predicting Intensive Care Unit Patients’ Discharge Date with a Hybrid Machine Learning Model That Combines Length of Stay and Days to Discharge," Mathematics, MDPI, vol. 11(23), pages 1-18, November.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:23:p:4773-:d:1288083
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/23/4773/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/23/4773/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:23:p:4773-:d:1288083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.