IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i9p1407-d799877.html
   My bibliography  Save this article

On the Existence of Self-Similar Solutions in the Thermostatted Kinetic Theory with Unbounded Activity Domain

Author

Listed:
  • Carlo Bianca

    (Laboratoire Quartz EA 7393, École Supérieure d’Ingénieurs en Génie Électrique, Productique et Management Industriel, 13 Boulevard de l’Hautil, 95092 Cergy Pontoise, France
    Laboratoire de Recherche en Eco-Innovation Industrielle et Energétique, École Supérieure d’Ingénieurs en Génie Électrique, Productique et Management Industriel, 95092 Cergy Pontoise, France)

  • Marco Menale

    (Dipartimento di Matematica e Fisica, Università degli Studi della Campania “L. Vanvitelli", Viale Lincoln 5, I-81100 Caserta, Italy)

Abstract

This paper is devoted to the mathematical analysis of a spatially homogeneous thermostatted kinetic theory framework with an unbounded activity domain. The framework consists of a partial integro-differential equation with quadratic nonlinearity where the domain of the activity variable is the whole real line. Specifically the mathematical analysis refers firstly to the existence and uniqueness of the solution for the related initial boundary value problem; Secondly the investigations are addressed to the existence of a class of self-similar solutions by employing the Fourier transform method. In particular the main result is obtained for a nonconstant interaction rate and a nonconstant force field. Conclusions and perspectives are discussed in the last section of the paper.

Suggested Citation

  • Carlo Bianca & Marco Menale, 2022. "On the Existence of Self-Similar Solutions in the Thermostatted Kinetic Theory with Unbounded Activity Domain," Mathematics, MDPI, vol. 10(9), pages 1-14, April.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1407-:d:799877
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/9/1407/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/9/1407/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlo Bianca & Massimiliano Ferrara & Luca Guerrini, 2014. "High-order moments conservation in thermostatted kinetic models," Journal of Global Optimization, Springer, vol. 58(2), pages 389-404, February.
    2. Bruno Carbonaro & Marco Menale, 2019. "Dependence on the Initial Data for the Continuous Thermostatted Framework," Mathematics, MDPI, vol. 7(7), pages 1-11, July.
    3. Tailong Li & Ping Chen & Jian Xie, 2013. "Self-Similar Solutions of the Compressible Flow in One-Space Dimension," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-5, October.
    4. Carlo Bianca & Caterina Mogno, 2018. "Modelling pedestrian dynamics into a metro station by thermostatted kinetic theory methods," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 24(2), pages 207-235, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikhail Kolev, 2019. "Mathematical Analysis of an Autoimmune Diseases Model: Kinetic Approach," Mathematics, MDPI, vol. 7(11), pages 1-14, October.
    2. Carlo Bianca & Marco Menale, 2020. "Mathematical Analysis of a Thermostatted Equation with a Discrete Real Activity Variable," Mathematics, MDPI, vol. 8(1), pages 1-8, January.
    3. Sana Abdulkream Alharbi & Azmin Sham Rambely, 2020. "A New ODE-Based Model for Tumor Cells and Immune System Competition," Mathematics, MDPI, vol. 8(8), pages 1-14, August.
    4. Bruno Carbonaro & Marco Menale, 2019. "Dependence on the Initial Data for the Continuous Thermostatted Framework," Mathematics, MDPI, vol. 7(7), pages 1-11, July.
    5. Carlo Bianca, 2022. "On the Modeling of Energy-Multisource Networks by the Thermostatted Kinetic Theory Approach: A Review with Research Perspectives," Energies, MDPI, vol. 15(21), pages 1-22, October.
    6. Liu, Shang & Li, Peiyu, 2020. "Nonlinear analysis of pedestrian flow Reynolds number in video scenes," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1407-:d:799877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.