IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i8p1256-d791177.html
   My bibliography  Save this article

Temperature Distribution in the Flow of a Viscous Incompressible Non-Newtonian Williamson Nanofluid Saturated by Gyrotactic Microorganisms

Author

Listed:
  • Mounirah Areshi

    (Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia)

  • Haifaa Alrihieli

    (Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia)

  • Elham Alali

    (Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia)

  • Ahmed M. Megahed

    (Department of Mathematics, Faculty of Science, Benha University, Benha 13518, Egypt)

Abstract

The heat and mass transfer in magnetized non-Newtonian Williamson nanofluid flow, saturated by gyrotactic microorganisms due to a stretched sheet, is debated here. The rough sheet is subjected to uniform heat flux, and its velocity is proportional to its distance from the slit. Nanofluid viscosity and thermal conductivity are temperature-dependent, but microbe diffusivity and Brownian motion are concentration-dependent. Through similarity transformation, the system of modeled equations is reduced to dimensionless differential equations. We employed the shooting approach in conjunction with the Runge–Kutta scheme to obtain a solution for the physical model. For various combinations of the controlling parameters, some numerical results are found. When the generated results are compared to the existing literature, the highest settlement is found. According to numerical results, the skin-friction coefficient rises as the magnetic field and thermal conductivity parameters rise, while the opposite tendency is observed for both the slip velocity and viscosity parameters.

Suggested Citation

  • Mounirah Areshi & Haifaa Alrihieli & Elham Alali & Ahmed M. Megahed, 2022. "Temperature Distribution in the Flow of a Viscous Incompressible Non-Newtonian Williamson Nanofluid Saturated by Gyrotactic Microorganisms," Mathematics, MDPI, vol. 10(8), pages 1-14, April.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:8:p:1256-:d:791177
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/8/1256/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/8/1256/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Megahed, Ahmed M., 2021. "Improvement of heat transfer mechanism through a Maxwell fluid flow over a stretching sheet embedded in a porous medium and convectively heated," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 97-109.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Idrees Afridi & Zhi-Min Chen & Theodoros E. Karakasidis & Muhammad Qasim, 2022. "Local Non-Similar Solutions for Boundary Layer Flow over a Nonlinear Stretching Surface with Uniform Lateral Mass Flux: Utilization of Third Level of Truncation," Mathematics, MDPI, vol. 10(21), pages 1-14, November.
    2. Haifaa Alrihieli & Mohammed Alrehili & Ahmed M. Megahed, 2022. "Radiative MHD Nanofluid Flow Due to a Linearly Stretching Sheet with Convective Heating and Viscous Dissipation," Mathematics, MDPI, vol. 10(24), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:8:p:1256-:d:791177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.