IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i6p870-d767362.html
   My bibliography  Save this article

Riemann–Hilbert Problems and Soliton Solutions of Type ( λ ∗ , − λ ∗ ) Reduced Nonlocal Integrable mKdV Hierarchies

Author

Listed:
  • Wen-Xiu Ma

    (Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
    Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, USA
    School of Mathematical and Statistical Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa)

Abstract

Reduced nonlocal matrix integrable modified Korteweg–de Vries (mKdV) hierarchies are presented via taking two transpose-type group reductions in the matrix Ablowitz–Kaup–Newell–Segur (AKNS) spectral problems. One reduction is local, which replaces the spectral parameter λ with its complex conjugate λ ∗ , and the other one is nonlocal, which replaces the spectral parameter λ with its negative complex conjugate − λ ∗ . Riemann–Hilbert problems and thus inverse scattering transforms are formulated from the reduced matrix spectral problems. In view of the specific distribution of eigenvalues and adjoint eigenvalues, soliton solutions are constructed from the reflectionless Riemann–Hilbert problems.

Suggested Citation

  • Wen-Xiu Ma, 2022. "Riemann–Hilbert Problems and Soliton Solutions of Type ( λ ∗ , − λ ∗ ) Reduced Nonlocal Integrable mKdV Hierarchies," Mathematics, MDPI, vol. 10(6), pages 1-21, March.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:6:p:870-:d:767362
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/6/870/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/6/870/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Wen-Xiu, 2021. "N-soliton solution and the Hirota condition of a (2+1)-dimensional combined equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 270-279.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Weitian & Liu, Wenjun & Zhang, Hongxin, 2022. "Soliton molecules in the kink, antikink and oscillatory background," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    2. Sudao Bilige & Leilei Cui & Xiaomin Wang, 2023. "Superposition Formulas and Evolution Behaviors of Multi-Solutions to the (3+1)-Dimensional Generalized Shallow Water Wave-like Equation," Mathematics, MDPI, vol. 11(8), pages 1-12, April.
    3. Acharya, S.P. & Janaki, M.S., 2022. "Nonlinear dynamical modelling of high frequency electrostatic drift waves using fluid theoretical approach in magnetized plasma," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sudao Bilige & Leilei Cui & Xiaomin Wang, 2023. "Superposition Formulas and Evolution Behaviors of Multi-Solutions to the (3+1)-Dimensional Generalized Shallow Water Wave-like Equation," Mathematics, MDPI, vol. 11(8), pages 1-12, April.
    2. Lü, Xing & Chen, Si-Jia, 2023. "N-soliton solutions and associated integrability for a novel (2+1)-dimensional generalized KdV equation," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Kuo, Chun-Ku, 2021. "A study on the resonant multi-soliton waves and the soliton molecule of the (3+1)-dimensional Kudryashov–Sinelshchikov equation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Xu, Yuanqing & Zheng, Xiaoxiao & Xin, Jie, 2022. "New non-traveling wave solutions for the (2+1)-dimensional variable coefficients Date-Jimbo-Kashiwara-Miwa equation," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    5. Rafiq, Muhammad Hamza & Raza, Nauman & Jhangeer, Adil, 2023. "Dynamic study of bifurcation, chaotic behavior and multi-soliton profiles for the system of shallow water wave equations with their stability," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    6. Sugati, Taghreed G. & Seadawy, Aly R. & Alharbey, R.A. & Albarakati, W., 2022. "Nonlinear physical complex hirota dynamical system: Construction of chirp free optical dromions and numerical wave solutions," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    7. Yu, Weitian & Luan, Zitong & Zhang, Hongxin & Liu, Wenjun, 2022. "Collisions of three higher order dark double- and single-hump solitons in optical fiber," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:6:p:870-:d:767362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.