A Feasibility Study on Gradient Boosting Regressor for Subsurface Sensor-Based Surface Instability Assessment
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Martin Kuradusenge & Santhi Kumaran & Marco Zennaro, 2020. "Rainfall-Induced Landslide Prediction Using Machine Learning Models: The Case of Ngororero District, Rwanda," IJERPH, MDPI, vol. 17(11), pages 1-20, June.
- Lin Wang & Ichiro Seko & Makoto Fukuhara & Ikuo Towhata & Taro Uchimura & Shangning Tao, 2022. "Risk evaluation and warning threshold of unstable slope using tilting sensor array," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 127-156, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Deborah Simon Mwakapesa & Yimin Mao & Xiaoji Lan & Yaser Ahangari Nanehkaran, 2023. "Landslide Susceptibility Mapping Using DIvisive ANAlysis (DIANA) and RObust Clustering Using linKs (ROCK) Algorithms, and Comparison of Their Performance," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
- Yuxin Guo & Zhanya Xu & Shuang Zhu & Xiangang Luo & Yinli Xiao, 2023. "Using distributed root soil moisture data to enhance the performance of rainfall thresholds for landslide warning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1167-1192, January.
- Aadil Manzoor Nanda & Fayaz A. Lone & Pervez Ahmed, 2024. "Prediction of rainfall-induced landslide using machine learning models along highway Bandipora to Gurez road, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(7), pages 6169-6197, May.
- Zemin Gao & Mingtao Ding, 2022. "Application of convolutional neural network fused with machine learning modeling framework for geospatial comparative analysis of landslide susceptibility," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 833-858, September.
More about this item
Keywords
gradient boosting regressor; subsurface monitoring; slope stability; urban expansion;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:3:p:565-:d:1607904. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.