IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i11p1934-d1522659.html
   My bibliography  Save this article

Identification of Urban Renewal Potential Areas and Analysis of Influential Factors from the Perspective of Vitality Enhancement: A Case Study of Harbin City’s Core Area

Author

Listed:
  • Xiquan Zhang

    (School of Architecture and Design, Harbin Institute of Technology, Harbin 150001, China
    Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin 150001, China)

  • Lizhu Du

    (School of Architecture and Design, Harbin Institute of Technology, Harbin 150001, China
    Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin 150001, China)

  • Xiaoyun Song

    (School of Architecture and Design, Harbin Institute of Technology, Harbin 150001, China
    Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin 150001, China)

Abstract

In the context of people-centered and sustainable urban policies, identifying renewal potential based on vitality enhancement is crucial for urban regeneration efforts. This article collected population density data, house price data, and built environment data to examine the spatial pattern characteristics of Harbin’s core area using spatial autocorrelation analysis. Building on these findings, a geographically weighted regression (GWR) model was constructed to further analyze the influencing mechanisms of the relevant factors. The analysis revealed significant spatial development imbalances within Harbin’s core area, characterized by differentiated and uneven development of social and economic vitality between the old city and newly constructed areas. Notably, in certain regions, the construction intensity does not align with the levels of social and economic vitality, indicating potential opportunities for urban renewal. Furthermore, the examination of key influencing factors highlighted that the accessibility of commercial facilities and development intensity had the most substantial positive impact on social vitality. In contrast, the age of construction and the distribution of educational facilities demonstrated a strong positive correlation with economic vitality. By clearly delineating specific areas with urban renewal potential, this study provided a detailed characterization of the urban development pattern in Harbin. Additionally, by depicting the local variations in influencing factors, it established analytical foundations and objective references for urban planning in targeted locations. Ultimately, this research contributes new insights and frameworks for urban renewal analyses applicable to other regions.

Suggested Citation

  • Xiquan Zhang & Lizhu Du & Xiaoyun Song, 2024. "Identification of Urban Renewal Potential Areas and Analysis of Influential Factors from the Perspective of Vitality Enhancement: A Case Study of Harbin City’s Core Area," Land, MDPI, vol. 13(11), pages 1-28, November.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:11:p:1934-:d:1522659
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/11/1934/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/11/1934/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Yilun & Zhu, A-Xing & Wang, Jingli & Li, Wenkai & Hu, Guohua & Hu, Yueming, 2019. "Land-use decision support in brownfield redevelopment for urban renewal based on crowdsourced data and a presence-and-background learning (PBL) method," Land Use Policy, Elsevier, vol. 88(C).
    2. Anqi Zhang & Weifeng Li & Jiayu Wu & Jian Lin & Jianqun Chu & Chang Xia, 2021. "How can the urban landscape affect urban vitality at the street block level? A case study of 15 metropolises in China," Environment and Planning B, , vol. 48(5), pages 1245-1262, June.
    3. Wang, Hao & Zhao, Yizhu & Gao, Xichen & Gao, Boyang, 2021. "Collaborative decision-making for urban regeneration: A literature review and bibliometric analysis," Land Use Policy, Elsevier, vol. 107(C).
    4. Bo Huang & Yulun Zhou & Zhigang Li & Yimeng Song & Jixuan Cai & Wei Tu, 2020. "Evaluating and characterizing urban vibrancy using spatial big data: Shanghai as a case study," Environment and Planning B, , vol. 47(9), pages 1543-1559, November.
    5. Pei Zhang & Tao Zhang & Hiroatsu Fukuda & Moheng Ma, 2023. "Evidence of Multi-Source Data Fusion on the Relationship between the Specific Urban Built Environment and Urban Vitality in Shenzhen," Sustainability, MDPI, vol. 15(8), pages 1-24, April.
    6. Wenli Dong & Xinyue Gao & Xiaowei Chen & Lihan Lin, 2023. "Industrial Park Renovation Strategy in a Poverty-Alleviated County Based on Inefficient Land Evaluation," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    7. Hongyu Gong & Xiaozihan Wang & Zihao Wang & Ziyi Liu & Qiushan Li & Yunhan Zhang, 2022. "How Did the Built Environment Affect Urban Vibrancy? A Big Data Approach to Post-Disaster Revitalization Assessment," IJERPH, MDPI, vol. 19(19), pages 1-25, September.
    8. He, Qingsong & He, Weishan & Song, Yan & Wu, Jiayu & Yin, Chaohui & Mou, Yanchuan, 2018. "The impact of urban growth patterns on urban vitality in newly built-up areas based on an association rules analysis using geographical ‘big data’," Land Use Policy, Elsevier, vol. 78(C), pages 726-738.
    9. Daniel P. McMillen, 2004. "Geographically Weighted Regression: The Analysis of Spatially Varying Relationships," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(2), pages 554-556.
    10. Yueran Wang & Wente Pan & Ziyan Liao, 2024. "Impact of Urban Morphology on High-Density Commercial Block Energy Consumption in Severe Cold Regions," Sustainability, MDPI, vol. 16(13), pages 1-26, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinyao Lin & Yaye Zhuang & Yang Zhao & Hua Li & Xiaoyu He & Siyan Lu, 2022. "Measuring the Non-Linear Relationship between Three-Dimensional Built Environment and Urban Vitality Based on a Random Forest Model," IJERPH, MDPI, vol. 20(1), pages 1-18, December.
    2. Aibo Jin & Yunyu Ge & Shiyang Zhang, 2024. "Spatial Characteristics of Multidimensional Urban Vitality and Its Impact Mechanisms by the Built Environment," Land, MDPI, vol. 13(7), pages 1-22, July.
    3. Hu, Qiyu & Shen, Wencang & Yan, Jinming & Kong, Weilong & Li, Wei & Zhang, Zhengfeng, 2024. "Does existing mixed land development promote the urban spatial composite function? Evidence from Beijing, China," Land Use Policy, Elsevier, vol. 143(C).
    4. Xuefeng Huang & Penghui Jiang & Manchun Li & Xin Zhao, 2022. "Applicable Framework for Evaluating Urban Vitality with Multiple-Source Data: Empirical Research of the Pearl River Delta Urban Agglomeration Using BPNN," Land, MDPI, vol. 11(11), pages 1-21, October.
    5. Wang, Xiaoxi & Zhang, Yaojun & Yu, Danlin & Qi, Jinghan & Li, Shujing, 2022. "Investigating the spatiotemporal pattern of urban vibrancy and its determinants: Spatial big data analyses in Beijing, China," Land Use Policy, Elsevier, vol. 119(C).
    6. Chengzhe Lyu, 2024. "Exploring the Influence of Dynamic Indicators in Urban Spaces on Residents’ Environmental Behavior: A Case Study in Shanghai Utilizing Mixed-Methods Approach and Artificial Neural Network (ANN) Modeli," Sustainability, MDPI, vol. 16(8), pages 1-27, April.
    7. Hongyu Gong & Xiaozihan Wang & Zihao Wang & Ziyi Liu & Qiushan Li & Yunhan Zhang, 2022. "How Did the Built Environment Affect Urban Vibrancy? A Big Data Approach to Post-Disaster Revitalization Assessment," IJERPH, MDPI, vol. 19(19), pages 1-25, September.
    8. Qingsong He & Miao Yan & Linzi Zheng & Bo Wang & Jiang Zhou, 2023. "The Effect of Urban Form on Urban Shrinkage—A Study of 293 Chinese Cities Using Geodetector," Land, MDPI, vol. 12(4), pages 1-17, March.
    9. Paköz, Muhammed Ziya & Yaratgan, Dilara & Şahin, Aydan, 2022. "Re-mapping urban vitality through Jane Jacobs’ criteria: The case of Kayseri, Turkey," Land Use Policy, Elsevier, vol. 114(C).
    10. Stevovic Ivan & Jovanovic Jovana & Hadrovic Sabahudin, 2023. "Sustainable Development In Urban Areas In Correlation With Overpopulation," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 3, pages 5-13, June.
    11. Martí, Pablo & García-Mayor, Clara & Nolasco-Cirugeda, Almudena & Serrano-Estrada, Leticia, 2020. "Green infrastructure planning: Unveiling meaningful spaces through Foursquare users’ preferences," Land Use Policy, Elsevier, vol. 97(C).
    12. João Monteiro & Ana Clara Carrilho & Nuno Sousa & Leise Kelli de Oliveira & Eduardo Natividade-Jesus & João Coutinho-Rodrigues, 2023. "Do We Live Where It Is Pleasant? Correlates of Perceived Pleasantness with Socioeconomic Variables," Land, MDPI, vol. 12(4), pages 1-20, April.
    13. Yifei Hu & Liu Wu & Ni Li & Tianwei Zhao, 2024. "Multi-Agent Decision-Making in Construction Engineering and Management: A Systematic Review," Sustainability, MDPI, vol. 16(16), pages 1-24, August.
    14. Pan, Huijun & Huang, Yu, 2024. "TOD typology and station area vibrancy: An interpretable machine learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 186(C).
    15. Jie Li & Kun Jia & Yanxu Liu & Bo Yuan & Mu Xia & Wenwu Zhao, 2021. "Spatiotemporal Distribution of Zika Virus and Its Spatially Heterogeneous Relationship with the Environment," IJERPH, MDPI, vol. 18(1), pages 1-14, January.
    16. Ziyu Wang & Nan Xia & Xin Zhao & Xing Gao & Sudan Zhuang & Manchun Li, 2023. "Evaluating Urban Vitality of Street Blocks Based on Multi-Source Geographic Big Data: A Case Study of Shenzhen," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    17. Fei Han & Xinqi Zheng & Peipei Wang & Dongya Liu & Minrui Zheng, 2022. "Effects of Meteorological Factors and Air Pollutants on COVID-19 Transmission under the Action of Control Measures," IJERPH, MDPI, vol. 19(15), pages 1-19, July.
    18. Reena Tiwari & Courtney Babb & Marian Tye & Fatmaelzahraa Hussein, 2024. "The Wharf Street Smart Park Story: A Guide to Navigating Multi-Stakeholder Innovation in Smart Cities," Sustainability, MDPI, vol. 16(2), pages 1-21, January.
    19. Nina Danilina & Anna Korobeinikova & Irina Teplova, 2024. "Decision-Making Approach for Land Use in Urban Industrial Area Redevelopment Projects," Sustainability, MDPI, vol. 16(22), pages 1-33, November.
    20. Jiayi Liu & Yanbin Li & Yanhan Xu & Castiel Chen Zhuang & Yang Hu & Yue Yu, 2024. "Impacts of Built Environment on Urban Vitality in Cultural Districts: A Case Study of Haikou and Suzhou," Land, MDPI, vol. 13(6), pages 1-26, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:11:p:1934-:d:1522659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.