IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i3p321-d756020.html
   My bibliography  Save this article

Optimization of Reclamation Measures in a Mining Area by Analysis of Variations in Soil Nutrient Grades under Different Types of Land Usage—A Case Study of Pingshuo Coal Mine, China

Author

Listed:
  • Xiang Fan

    (College of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China
    School of Land Science and Technology, China University of Geosciences Beijing, Beijing 100083, China)

  • Yanjun Guan

    (School of Land Science and Technology, China University of Geosciences Beijing, Beijing 100083, China)

  • Zhongke Bai

    (School of Land Science and Technology, China University of Geosciences Beijing, Beijing 100083, China
    Key Laboratory of Land Consolidation and Rehabilitation, Ministry of Natural Resources, Beijing 100035, China
    Technology Innovation Center for Ecological Restoration in Mining Areas, Ministry of Natural Resources, Beijing 100083, China)

  • Wei Zhou

    (School of Land Science and Technology, China University of Geosciences Beijing, Beijing 100083, China
    Key Laboratory of Land Consolidation and Rehabilitation, Ministry of Natural Resources, Beijing 100035, China
    Technology Innovation Center for Ecological Restoration in Mining Areas, Ministry of Natural Resources, Beijing 100083, China)

  • Chuxin Zhu

    (College of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China
    School of Land Science and Technology, China University of Geosciences Beijing, Beijing 100083, China)

Abstract

The development of reclaimed mine soils is normally spatially heterogeneous, making the fine management and utilization of reclaimed mined lands difficult. Soil nutrient grading can provide a scientific basis for the precise regulation of soil nutrients, but few related studies are available in reclaimed mined areas. This study aimed to quantify the spatiotemporal variations in soil nutrient grades under different land-use types in a reclaimed mined area on the Loess Plateau, China. The study area was graded by four soil nutrients (soil available potassium (SAK), soil available phosphorus (SAP), soil total nitrogen (STN), and soil organic matter (SOM)), and the variation features of soil nutrient grades in the initial stage of reclamation under four land-use types (i.e., cultivated land, grassland, forestland, and barren land) were systematically characterized by geostatistical analysis, pedodiversity analysis, and correspondence analysis. The results show that during the initial five years after reclamation, the soil nutrient grades of most reclaimed areas increased from Grade V and VI to Grade I–IV, while the improvements were significantly heterogeneous. Notably, the four land-use types had distinct variation characteristics. The barren land had the lowest SAP level, whereas it had the highest proportion, and medium–high grades of SAK, STN, and SOM (88.3, 100.0, and 100.0%, respectively). In terms of quantitative structure, it had the lowest richness index ( S ′ , 2.5) and Shannon’s entropy index ( H ′ , 0.7) and the highest evenness index ( E ′ , 0.8). These results suggest that the barren land had relatively high and balanced nutrients, with the highest homogeneity among the four land-use types. The grassland had considerable improvement in all nutrients (especially SAP; 95.6% of the area had high SAP grades); however, its improvement was the most heterogeneous ( S ′ = 4.5, E ′ = 0.7). As the second-most heterogeneous land-use type ( S ′ = 4.0, E ′ = 0.8), the forestland had relatively low STN, SAP, and SAK levels due to high nutrient uptake and storage by tree species, but it had the highest proportion of area that reached high SOM grades (36.4%) and medium to high SOM grades (100.0%) due to its high community productivity. The cultivated land, which received fertilization for an additional three years, was the most imbalanced in terms of nutrients. It had the highest proportion of area that reached high SAP grades (98.0%); in contrast, its area proportions of low-grade SAK and SOM (69.0 and 32.9%, respectively) were the highest among the four land-use types. Based on the above comprehensive characterization of soil nutrient grade variation, guidance was given for fine management of reclaimed mined land and the optimization of reclamation measures.

Suggested Citation

  • Xiang Fan & Yanjun Guan & Zhongke Bai & Wei Zhou & Chuxin Zhu, 2022. "Optimization of Reclamation Measures in a Mining Area by Analysis of Variations in Soil Nutrient Grades under Different Types of Land Usage—A Case Study of Pingshuo Coal Mine, China," Land, MDPI, vol. 11(3), pages 1-19, February.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:3:p:321-:d:756020
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/3/321/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/3/321/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rebecca M. Swab & Nicola Lorenz & Nathan R. Lee & Steven W. Culman & Richard P. Dick, 2020. "From the Ground Up: Prairies on Reclaimed Mine Land—Impacts on Soil and Vegetation," Land, MDPI, vol. 9(11), pages 1-19, November.
    2. Guo, Zelian & Hu, Yecui & Zheng, Xinqi, 2020. "Evaluating the effectiveness of land use master plans in built-up land management: A case study of the Jinan Municipality, eastern China," Land Use Policy, Elsevier, vol. 91(C).
    3. Elena A. Mikhailova & Hamdi A. Zurqani & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2021. "Soil Diversity (Pedodiversity) and Ecosystem Services," Land, MDPI, vol. 10(3), pages 1-34, March.
    4. Lechner, Alex Mark & Kassulke, Owen & Unger, Corinne, 2016. "Spatial assessment of open cut coal mining progressive rehabilitation to support the monitoring of rehabilitation liabilities," Resources Policy, Elsevier, vol. 50(C), pages 234-243.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haoxuan Yu & Shuai Li & Lifeng Yu & Xinmin Wang, 2022. "The Recent Progress China Has Made in Green Mine Construction, Part II: Typical Examples of Green Mines," IJERPH, MDPI, vol. 19(13), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philip C. Hutton & Elena A. Mikhailova & Lili Lin & Zhenbang Hao & Hamdi A. Zurqani & Christopher J. Post & Mark A. Schlautman & George B. Shepherd, 2022. "Net-Zero Target and Emissions from Land Conversions: A Case Study of Maryland’s Climate Solutions Now Act," Geographies, MDPI, vol. 3(1), pages 1-20, December.
    2. Menzori, Ivan Damasco & Sousa, Isabel Cristina Nunes de & Gonçalves, Luciana Márcia, 2021. "Urban growth management and territorial governance approaches: A master plans conformance analysis," Land Use Policy, Elsevier, vol. 105(C).
    3. Karakadzai, Thomas & Bandauko, Elmond & Chaeruka, Joel & Arku, Godwin, 2023. "Examining the conformance of development to local spatial plans amid rapid urbanisation in Harare, Zimbabwe," Land Use Policy, Elsevier, vol. 126(C).
    4. Drew A. Scott & Kathryn D. Eckhoff & Nicola Lorenz & Richard Dick & Rebecca M. Swab, 2021. "Diversity Is Not Everything," Land, MDPI, vol. 10(10), pages 1-20, October.
    5. Hussain, Zahid & Nadeem, Obaidullah, 2021. "The nexus between growth strategies of master plans and spatial dynamics of a metropolitan city: The case of Lahore, Pakistan," Land Use Policy, Elsevier, vol. 109(C).
    6. Bryan Salgado-Almeida & Daniel A. Falquez-Torres & Paola L. Romero-Crespo & Priscila E. Valverde-Armas & Fredy Guzmán-Martínez & Samantha Jiménez-Oyola, 2022. "Risk Assessment of Mining Environmental Liabilities for Their Categorization and Prioritization in Gold-Mining Areas of Ecuador," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    7. Everingham, Jo-Anne & Rolfe, John & Lechner, Alex Mark & Kinnear, Susan & Akbar, Delwar, 2018. "A proposal for engaging a stakeholder panel in planning post-mining land uses in Australia’s coal-rich tropical savannahs," Land Use Policy, Elsevier, vol. 79(C), pages 397-406.
    8. De Valck, Jeremy & Williams, Galina & Kuik, Swee, 2021. "Does coal mining benefit local communities in the long run? A sustainability perspective on regional Queensland, Australia," Resources Policy, Elsevier, vol. 71(C).
    9. Manchao He & Yubing Gao & Jun Yang & Weili Gong, 2017. "An Innovative Approach for Gob-Side Entry Retaining in Thick Coal Seam Longwall Mining," Energies, MDPI, vol. 10(11), pages 1-22, November.
    10. Weyer, Vanessa D. & Truter, Wayne F. & Lechner, Alex M. & Unger, Corinne J., 2017. "Surface-strip coal mine land rehabilitation planning in South Africa and Australia: Maturity and opportunities for improvement," Resources Policy, Elsevier, vol. 54(C), pages 117-129.
    11. Izabela Jonek-Kowalska & Marian Turek, 2017. "Dependence of Total Production Costs on Production and Infrastructure Parameters in the Polish Hard Coal Mining Industry," Energies, MDPI, vol. 10(10), pages 1-22, September.
    12. Fanchao Kong & Kaixiao Zhang & Hengshu Fu & Lina Cui & Yang Li & Tengteng Wang, 2023. "Temporal–Spatial Variations and Convergence Analysis of Land Use Eco-Efficiency in the Urban Agglomerations of the Yellow River Basin in China," Sustainability, MDPI, vol. 15(16), pages 1-20, August.
    13. Elena A. Mikhailova & Hamdi A. Zurqani & Lili Lin & Zhenbang Hao & Christopher J. Post & Mark A. Schlautman & George B. Shepherd, 2023. "Opportunities for Monitoring Soil and Land Development to Support United Nations (UN) Sustainable Development Goals (SDGs): A Case Study of the United States of America (USA)," Land, MDPI, vol. 12(10), pages 1-23, September.
    14. Elena A. Mikhailova & Lili Lin & Zhenbang Hao & Hamdi A. Zurqani & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2022. "Contribution of Land Cover Conversions to Connecticut (USA) Carbon Footprint," Geographies, MDPI, vol. 2(2), pages 1-17, May.
    15. Elena A. Mikhailova & Hamdi A. Zurqani & Christopher J. Post & Mark A. Schlautman & Gregory C. Post & Lili Lin & Zhenbang Hao, 2021. "Soil Carbon Regulating Ecosystem Services in the State of South Carolina, USA," Land, MDPI, vol. 10(3), pages 1-19, March.
    16. Qiu-Ping Bi & Yu-Cheng Li & Cheng Shen, 2021. "Screening of Evaluation Index and Construction of Evaluation Index System for Mine Ventilation System," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    17. Anna Kopeć & Paweł Trybała & Dariusz Głąbicki & Anna Buczyńska & Karolina Owczarz & Natalia Bugajska & Patrycja Kozińska & Monika Chojwa & Agata Gattner, 2020. "Application of Remote Sensing, GIS and Machine Learning with Geographically Weighted Regression in Assessing the Impact of Hard Coal Mining on the Natural Environment," Sustainability, MDPI, vol. 12(22), pages 1-26, November.
    18. He, Zhichao & Zhao, Chunhong & Fürst, Christine & Hersperger, Anna M., 2021. "Closer to causality: How effective is spatial planning in governing built-up land expansion in Fujian Province, China?," Land Use Policy, Elsevier, vol. 108(C).
    19. Elena A. Mikhailova & Lili Lin & Zhenbang Hao & Hamdi A. Zurqani & Christopher J. Post & Mark A. Schlautman & Gregory C. Post & George B. Shepherd, 2022. "Conflicts of Interest and Emissions from Land Conversions: State of New Jersey as a Case Study," Geographies, MDPI, vol. 2(4), pages 1-22, November.
    20. Yubing Gao & Dongqiao Liu & Xingyu Zhang & Manchao He, 2017. "Analysis and Optimization of Entry Stability in Underground Longwall Mining," Sustainability, MDPI, vol. 9(11), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:3:p:321-:d:756020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.