IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i11p1241-d678070.html
   My bibliography  Save this article

A High–Resolution Accumulation Record of Arsenic and Mercury after the First Industrial Revolution from a Peatland in Zoige, Qinghai–Tibet Plateau

Author

Listed:
  • Xuhui Chen

    (CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
    Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan 624400, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    Both authors equally contribute to this work.)

  • Qianqian Su

    (CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
    Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan 624400, China
    Both authors equally contribute to this work.)

  • Huai Chen

    (CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
    Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan 624400, China
    CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China)

  • Dan Xue

    (CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
    Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan 624400, China)

Abstract

The impacts of human activities on Zoige peatlands are poorly documented. We determined the concentrations and accumulation rates of As and Hg in a 210 Pb-dated peat profile collected from this area and analyzed the correlations between accumulation rates of both As and Hg and other physicochemical properties. To reconstruct recent conditions of As and Hg, we analyzed peat sediments of Re’er Dam peatland in Zoige using 210 Pb and 137 Cs dating technologies. The concentrations of total As (86.38 to 174.21 μg kg −1 ) and Hg (7.30 to 32.13 μg kg −1 ) in the peat profile clearly increased after the first industrial revolution. From AD 1824 to AD 2010, the average accumulation rates were 129.77 μg m −2 yr −1 for As and 18.24 μg m −2 yr −1 for Hg. Based on our results, anthropogenic emissions significantly affected the atmospheric fluxes of As and Hg throughout the past 200 years, and As was also likely to be affected by other factors than atmospheric deposition, which needs further identification by future studies. The historical variations in As and Hg concentrations in Re’er Dam peatland in Zoige mirror the industrial development of China.

Suggested Citation

  • Xuhui Chen & Qianqian Su & Huai Chen & Dan Xue, 2021. "A High–Resolution Accumulation Record of Arsenic and Mercury after the First Industrial Revolution from a Peatland in Zoige, Qinghai–Tibet Plateau," Land, MDPI, vol. 10(11), pages 1-14, November.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:11:p:1241-:d:678070
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/11/1241/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/11/1241/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Farhana S. Islam & Andrew G. Gault & Christopher Boothman & David A. Polya & John M. Charnock & Debashis Chatterjee & Jonathan R. Lloyd, 2004. "Role of metal-reducing bacteria in arsenic release from Bengal delta sediments," Nature, Nature, vol. 430(6995), pages 68-71, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Swapnila Roy, 2018. "Distribution of Arsenic Species in Surface Water Using Flow Injection Hydride Generation Atomic Absorption Spectrometry and Furnace Method," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 12(4), pages 104-110, June.
    2. Md. Khalequzzaman & Fazlay S. Faruque & Amal K. Mitra, 2005. "Assessment of Arsenic Contamination of Groundwater and Health Problems in Bangladesh," IJERPH, MDPI, vol. 2(2), pages 1-10, August.
    3. Zhou Jiang & Xin Shen & Bo Shi & Mengjie Cui & Yanhong Wang & Ping Li, 2022. "Arsenic Mobilization and Transformation by Ammonium-Generating Bacteria Isolated from High Arsenic Groundwater in Hetao Plain, China," IJERPH, MDPI, vol. 19(15), pages 1-15, August.
    4. Yang Yang & Xi Xie & Mengna Chen & Zuoming Xie & Jia Wang, 2022. "Effects of Sulfide Input on Arsenate Bioreduction and Its Reduction Product Formation in Sulfidic Groundwater," IJERPH, MDPI, vol. 19(24), pages 1-13, December.
    5. Debashis Chatterjee & Pinaki Ghosh & Shilajit Barua & Aishwarya Mukherjee, 2017. "Biogeochemical activity in arsenic prone zone," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 1(3), pages 78-79, January.
    6. Pandey, Vimal Chandra & Singh, Jay Shankar & Singh, Rana P. & Singh, Nandita & Yunus, M., 2011. "Arsenic hazards in coal fly ash and its fate in Indian scenario," Resources, Conservation & Recycling, Elsevier, vol. 55(9), pages 819-835.
    7. Dipankar Chakraborti & Sushant K. Singh & Mohammad Mahmudur Rahman & Rathindra Nath Dutta & Subhas Chandra Mukherjee & Shyamapada Pati & Probir Bijoy Kar, 2018. "Groundwater Arsenic Contamination in the Ganga River Basin: A Future Health Danger," IJERPH, MDPI, vol. 15(2), pages 1-19, January.
    8. Manoj Kumar & AL. Ramanathan, 2018. "Vertical Geochemical Variations and Speciation Studies of As, Fe, Mn, Zn, and Cu in the Sediments of the Central Gangetic Basin: Sequential Extraction and Statistical Approach," IJERPH, MDPI, vol. 15(2), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:11:p:1241-:d:678070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.