IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i2p180-d128212.html
   My bibliography  Save this article

Groundwater Arsenic Contamination in the Ganga River Basin: A Future Health Danger

Author

Listed:
  • Dipankar Chakraborti

    (School of Environmental Studies, Jadavpur University, Kolkata 700032, India)

  • Sushant K. Singh

    (Virtusa Corporation, Irvington, NJ 07111, USA)

  • Mohammad Mahmudur Rahman

    (Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan Campus, Callaghan, NSW 2308, Australia)

  • Rathindra Nath Dutta

    (Department of Dermatology, Institute of Post Graduate Medical Education and Research, SSKM Hospital, Kolkata 700020, India)

  • Subhas Chandra Mukherjee

    (Department of Neurology, Medical College, Kolkata 700073, India)

  • Shyamapada Pati

    (Department of Obstetrics and Gynecology, Calcutta National Medical College, Kolkata 700014, India)

  • Probir Bijoy Kar

    (Surgical Oncologist, Barasat Cancer Research and Welfare Centre, Kolkata 700124, India)

Abstract

This study highlights the severity of arsenic contamination in the Ganga River basin (GRB), which encompasses significant geographic portions of India, Bangladesh, Nepal, and Tibet. The entire GRB experiences elevated levels of arsenic in the groundwater (up to 4730 µg/L), irrigation water (~1000 µg/L), and in food materials (up to 3947 µg/kg), all exceeding the World Health Organization’s standards for drinking water, the United Nations Food and Agricultural Organization’s standard for irrigation water (100 µg/L), and the Chinese Ministry of Health’s standard for food in South Asia (0.15 mg/kg), respectively. Several individuals demonstrated dermal, neurological, reproductive, cognitive, and cancerous effects; many children have been diagnosed with a range of arsenicosis symptoms, and numerous arsenic-induced deaths of youthful victims are reported in the GRB. Victims of arsenic exposure face critical social challenges in the form of social isolation and hatred by their respective communities. Reluctance to establish arsenic standards and unsustainable arsenic mitigation programs have aggravated the arsenic calamity in the GRB and put millions of lives in danger. This alarming situation resembles a ticking time bomb. We feel that after 29 years of arsenic research in the GRB, we have seen the tip of the iceberg with respect to the actual magnitude of the catastrophe; thus, a reduced arsenic standard for drinking water, testing all available drinking water sources, and sustainable and cost-effective arsenic mitigation programs that include the participation of the people are urgently needed.

Suggested Citation

  • Dipankar Chakraborti & Sushant K. Singh & Mohammad Mahmudur Rahman & Rathindra Nath Dutta & Subhas Chandra Mukherjee & Shyamapada Pati & Probir Bijoy Kar, 2018. "Groundwater Arsenic Contamination in the Ganga River Basin: A Future Health Danger," IJERPH, MDPI, vol. 15(2), pages 1-19, January.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:2:p:180-:d:128212
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/2/180/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/2/180/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tarit Roy Chowdhury & Gautam Kumar Basu & Badal Kumar Mandal & Bhajan Kumar Biswas & Gautam Samanta & Uttam Kumar Chowdhury & Chitta Ranjan Chanda & Dilip Lodh & Sagar Lal Roy & Khitish Chandra Saha &, 1999. "Arsenic poisoning in the Ganges delta," Nature, Nature, vol. 401(6753), pages 545-546, October.
    2. Farhana S. Islam & Andrew G. Gault & Christopher Boothman & David A. Polya & John M. Charnock & Debashis Chatterjee & Jonathan R. Lloyd, 2004. "Role of metal-reducing bacteria in arsenic release from Bengal delta sediments," Nature, Nature, vol. 430(6995), pages 68-71, July.
    3. Sushant Singh & Neeraj Vedwan, 2015. "Mapping composite vulnerability to groundwater arsenic contamination: an analytical framework and a case study in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1883-1908, January.
    4. Ross Nickson & John McArthur & William Burgess & Kazi Matin Ahmed & Peter Ravenscroft & Mizanur Rahmanñ, 1998. "Arsenic poisoning of Bangladesh groundwater," Nature, Nature, vol. 395(6700), pages 338-338, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amitrajeet A. Batabyal & Hamid Beladi, 2023. "Centralized versus Decentralized Cleanup of River Water Pollution: An Application to the Ganges," Games, MDPI, vol. 14(5), pages 1-12, October.
    2. Laura A. Richards & Arun Kumar & Prabhat Shankar & Aman Gaurav & Ashok Ghosh & David A. Polya, 2020. "Distribution and Geochemical Controls of Arsenic and Uranium in Groundwater-Derived Drinking Water in Bihar, India," IJERPH, MDPI, vol. 17(7), pages 1-26, April.
    3. Md Rokonuzzaman & Zhihong Ye & Chuan Wu & Wai-Chin Li, 2023. "Arsenic Elevated Groundwater Irrigation: Farmers’ Perception of Rice and Vegetable Contamination in a Naturally Arsenic Endemic Area," IJERPH, MDPI, vol. 20(6), pages 1-19, March.
    4. Fengjun Shao & Wenfeng Wang & Qingfeng Lu & Kexin Che & Bo Zhu, 2024. "Spatial Distribution of Arsenic in the Aksu River Basin, Xinjiang, China: The Cumulative Frequency Curve and Geostatistical Analysis," Sustainability, MDPI, vol. 16(4), pages 1-15, February.
    5. M. Mominul Islam & Md. Rezaul Karim & Xin Zheng & Xiaofang Li, 2018. "Heavy Metal and Metalloid Pollution of Soil, Water and Foods in Bangladesh: A Critical Review," IJERPH, MDPI, vol. 15(12), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Atkins & Manzurul Hassan & Christine Dunn, 2007. "Environmental Irony: Summoning Death in Bangladesh," Environment and Planning A, , vol. 39(11), pages 2699-2714, November.
    2. Tiffany VanDerwerker & Lin Zhang & Erin Ling & Brian Benham & Madeline Schreiber, 2018. "Evaluating Geologic Sources of Arsenic in Well Water in Virginia (USA)," IJERPH, MDPI, vol. 15(4), pages 1-17, April.
    3. Swapnila Roy, 2018. "Distribution of Arsenic Species in Surface Water Using Flow Injection Hydride Generation Atomic Absorption Spectrometry and Furnace Method," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 12(4), pages 104-110, June.
    4. Laura A. Richards & Arun Kumar & Prabhat Shankar & Aman Gaurav & Ashok Ghosh & David A. Polya, 2020. "Distribution and Geochemical Controls of Arsenic and Uranium in Groundwater-Derived Drinking Water in Bihar, India," IJERPH, MDPI, vol. 17(7), pages 1-26, April.
    5. Md. Khalequzzaman & Fazlay S. Faruque & Amal K. Mitra, 2005. "Assessment of Arsenic Contamination of Groundwater and Health Problems in Bangladesh," IJERPH, MDPI, vol. 2(2), pages 1-10, August.
    6. Zhou Jiang & Xin Shen & Bo Shi & Mengjie Cui & Yanhong Wang & Ping Li, 2022. "Arsenic Mobilization and Transformation by Ammonium-Generating Bacteria Isolated from High Arsenic Groundwater in Hetao Plain, China," IJERPH, MDPI, vol. 19(15), pages 1-15, August.
    7. Md Golam Azam & Md Mujibor Rahman, 2022. "Assessing spatial vulnerability of Bangladesh to climate change and extremes: a geographic information system approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-35, August.
    8. Con, T. H. & Hanh, N. T. & Berg, M. & Viet, P. H., 2003. "Release of arsenic from minerals to the water phase," Conference Papers h033501, International Water Management Institute.
    9. Xuhui Chen & Qianqian Su & Huai Chen & Dan Xue, 2021. "A High–Resolution Accumulation Record of Arsenic and Mercury after the First Industrial Revolution from a Peatland in Zoige, Qinghai–Tibet Plateau," Land, MDPI, vol. 10(11), pages 1-14, November.
    10. Yang Yang & Xi Xie & Mengna Chen & Zuoming Xie & Jia Wang, 2022. "Effects of Sulfide Input on Arsenate Bioreduction and Its Reduction Product Formation in Sulfidic Groundwater," IJERPH, MDPI, vol. 19(24), pages 1-13, December.
    11. Abu Mohd Naser & Thomas F. Clasen & Stephen P. Luby & Mahbubur Rahman & Leanne Unicomb & Kazi M. Ahmed & Solaiman Doza & Shadassa Ourshalimian & Howard H. Chang & Jennifer D. Stowell & K. M. Venkat Na, 2019. "Groundwater Chemistry and Blood Pressure: A Cross-Sectional Study in Bangladesh," IJERPH, MDPI, vol. 16(13), pages 1-14, June.
    12. S. Chidambaram & R. Thilagavathi & C. Thivya & U. Karmegam & M. V. Prasanna & AL. Ramanathan & K. Tirumalesh & P. Sasidhar, 2017. "A study on the arsenic concentration in groundwater of a coastal aquifer in south-east India: an integrated approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(3), pages 1015-1040, June.
    13. Zareena Begum I, 2012. "Arsenic Contamination in Water: A Conceptual Framework of Policy Options," Working Papers 2012-064, Madras School of Economics,Chennai,India.
    14. Aziz, Sonia & Boyle, Kevin & Akanda, Ali S. & Hanifi, M.A. & Pakhtigian, Emily L., 2022. "Early Warning Systems, Mobile Technology, and Cholera Aversion: Evidence from Rural Bangladesh," RFF Working Paper Series 22-24, Resources for the Future.
    15. Viet, P. H. & Con, T. H. & Ha, C. T. & Tin, N. V. & Berg, M. & Giger, W. & Schertenleib, R., 2003. "Arsenic removal technologies for drinking water in Vietnam," Conference Papers h033502, International Water Management Institute.
    16. Muhammad Bilal Shakoor & Nabeel Khan Niazi & Irshad Bibi & Mohammad Mahmudur Rahman & Ravi Naidu & Zhaomin Dong & Muhammad Shahid & Muhammad Arshad, 2015. "Unraveling Health Risk and Speciation of Arsenic from Groundwater in Rural Areas of Punjab, Pakistan," IJERPH, MDPI, vol. 12(10), pages 1-20, October.
    17. Debashis Chatterjee & Pinaki Ghosh & Shilajit Barua & Aishwarya Mukherjee, 2017. "Biogeochemical activity in arsenic prone zone," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 1(3), pages 78-79, January.
    18. Sushant K. Singh, 2017. "Conceptual framework of a cloud-based decision support system for arsenic health risk assessment," Environment Systems and Decisions, Springer, vol. 37(4), pages 435-450, December.
    19. Pandey, Vimal Chandra & Singh, Jay Shankar & Singh, Rana P. & Singh, Nandita & Yunus, M., 2011. "Arsenic hazards in coal fly ash and its fate in Indian scenario," Resources, Conservation & Recycling, Elsevier, vol. 55(9), pages 819-835.
    20. Tatsuya Makino & Keigo Noda & Keoduangchai Keokhamphui & Hiromasa Hamada & Kazuo Oki & Taikan Oki, 2016. "The Effects of Five Forms of Capital on Thought Processes Underlying Water Consumption Behavior in Suburban Vientiane," Sustainability, MDPI, vol. 8(6), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:2:p:180-:d:128212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.