Author
Listed:
- Fatma Ben Hamadou
(Laboratory LEG, Faculty of Economics and Management of Sfax, Sfax University, Sfax 3018, Tunisia)
- Mouna Boujelbène Abbes
(Laboratory LEG, Faculty of Economics and Management of Sfax, Sfax University, Sfax 3018, Tunisia)
Abstract
This article aims to investigate the impact of sustainable assets on dynamic portfolio optimization under varying levels of investor risk aversion, particularly during turbulent market conditions. The analysis compares the performance of two portfolio types: (i) portfolios composed of non-sustainable assets such as fossil energy commodities and conventional equity indices, and (ii) mixed portfolios that combine non-sustainable and sustainable assets, including renewable energy, green bonds, and precious metals using advanced Deep Reinforcement Learning models (including TD3 and DDPG) based on risk and transaction cost- sensitive in portfolio optimization against the traditional Mean-Variance model. Results show that incorporating clean and sustainable assets significantly enhances portfolio returns and reduces volatility across all risk aversion profiles. Moreover, the Deep Reinforcing Learning optimization models outperform classical MV optimization, and the RTC-LSTM-TD3 optimization strategy outperforms all others. The RTC-LSTM-TD3 optimization achieves an annual return of 24.18% and a Sharpe ratio of 2.91 in mixed portfolios (sustainable and non-sustainable assets) under low risk aversion (λ = 0.005), compared to a return of only 8.73% and a Sharpe ratio of 0.67 in portfolios excluding sustainable assets. To the best of the authors’ knowledge, this is the first study that employs the DRL framework integrating risk sensitivity and transaction costs to evaluate the diversification benefits of sustainable assets. Findings offer important implications for portfolio managers to leverage the benefits of sustainable diversification, and for policymakers to encourage the integration of sustainable assets, while addressing fiduciary responsibilities.
Suggested Citation
Fatma Ben Hamadou & Mouna Boujelbène Abbes, 2025.
"Sustainable vs. Non-Sustainable Assets: A Deep Learning-Based Dynamic Portfolio Allocation Strategy,"
JRFM, MDPI, vol. 18(10), pages 1-25, October.
Handle:
RePEc:gam:jjrfmx:v:18:y:2025:i:10:p:563-:d:1764661
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:18:y:2025:i:10:p:563-:d:1764661. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.