IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v15y2022i2p47-d729356.html
   My bibliography  Save this article

Diffusion on the Peer-to-Peer Network

Author

Listed:
  • Julien Riposo

    (Independent Researcher, 59118 Wambrechies, France)

Abstract

In a peer-to-peer complex environment, information is permanently diffused. Such an environment can be modeled as a graph, where there are flows of information. The interest of such modeling is that (1) one can describe the exchanges through time from an initial state of the network, (2) the description can be used through the fit of a real-world case and to perform further forecasts, and (3) it can be used to trace information through time. In this paper, we review the methodology for describing diffusion processes on a network in the context of exchange of information in a crypto (Bitcoin) peer-to-peer network. Necessary definitions are posed, and the diffusion equation is derived by considering two different types of Laplacian operators. Equilibrium conditions are discussed, and analytical solutions are derived, particularly in the context of a directed graph, which constitutes the main innovation of this paper. Further innovations follow as the inclusion of boundary conditions, as well as the implementation of delay in the diffusion equation, followed by a discussion when doing approximations useful for the implementation. Numerous numerical simulations additionally illustrate the theory developed all along the paper. Specifically, we validated, through simple examples, the derived analytic solutions, and implemented them in more sophisticated graphs, e.g., the ring graph, particularly important in crypto peer-to-peer networks. As a conclusion for this article, we further developed a theory useful for fitting purposes in order to gain more information on its diffusivity, and through a modeling which the scientific community is aware of.

Suggested Citation

  • Julien Riposo, 2022. "Diffusion on the Peer-to-Peer Network," JRFM, MDPI, vol. 15(2), pages 1-45, January.
  • Handle: RePEc:gam:jjrfmx:v:15:y:2022:i:2:p:47-:d:729356
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/15/2/47/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/15/2/47/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:15:y:2022:i:2:p:47-:d:729356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.