IDEAS home Printed from https://ideas.repec.org/a/gam/jjopen/v5y2022i4p28-426d937640.html
   My bibliography  Save this article

Estimating Flooding at River Spree Floodplain Using HEC-RAS Simulation

Author

Listed:
  • Munshi Md Shafwat Yazdan

    (Department of Civil & Environmental Engineering, Idaho State University, Pocatello, ID 83209, USA)

  • Md Tanvir Ahad

    (School of Aerospace & Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA)

  • Raaghul Kumar

    (Department of Civil & Environmental Engineering, Idaho State University, Pocatello, ID 83209, USA)

  • Md Abdullah Al Mehedi

    (Department of Civil and Environmental Engineering, Villanova University, Villanova, PA 19085, USA)

Abstract

River renaturation can be an effective management method for restoring a floodplain’s natural capacity and minimizing the effects during high flow periods. A 1D-2D Hydrologic Engineering Center–River Analysis System (HEC-RAS) model, in which the flood plain was considered as 2D and the main channel as 1D, was used to simulate flooding in the restored reach of the Spree River, Germany. When computing in this model, finite volume and finite difference approximations using the Preissmann approach are used for the 1D and 2D models, respectively. To comprehend the sensitivity of the parameters and model, several scenarios were simulated using different time steps and grid sizes. Additionally, dikes, dredging, and changes to the vegetation pattern were used to simulate flood mitigation measures. The model predicted that flooding would occur mostly in the downstream portion of the channel in the majority of the scenarios without mitigation measures, whereas with mitigation measures, flooding in the floodplain would be greatly reduced. By preserving the natural balance on the channel’s floodplain, the restored area needs to be kept in good condition. Therefore, mitigating measures that balance the area’s economic and environmental aspects must be considered in light of the potential for floods.

Suggested Citation

  • Munshi Md Shafwat Yazdan & Md Tanvir Ahad & Raaghul Kumar & Md Abdullah Al Mehedi, 2022. "Estimating Flooding at River Spree Floodplain Using HEC-RAS Simulation," J, MDPI, vol. 5(4), pages 1-17, October.
  • Handle: RePEc:gam:jjopen:v:5:y:2022:i:4:p:28-426:d:937640
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8800/5/4/28/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8800/5/4/28/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Javed Mallick & Roquia Salam & Ruhul Amin & Abu Reza Md. Towfiqul Islam & Aznarul Islam & Md. Nur Alam Siddik & G. M. Monirul Alam, 2022. "Assessing factors affecting drought, earthquake, and flood risk perception: empirical evidence from Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1633-1656, June.
    2. Sayantan Das & Nabendu Kar & Sunando Bandyopadhyay, 2015. "Glacial lake outburst flood at Kedarnath, Indian Himalaya: a study using digital elevation models and satellite images," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 769-786, June.
    3. Joy Sanyal & X. Lu, 2004. "Application of Remote Sensing in Flood Management with Special Reference to Monsoon Asia: A Review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 33(2), pages 283-301, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgia Siakara & Nikolaos Gourgouletis & Evangelos Baltas, 2024. "Assessing the Efficiency of Fully Two-Dimensional Hydraulic HEC-RAS Models in Rivers of Cyprus," Geographies, MDPI, vol. 4(3), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Uzzal Mia & Tahmida Naher Chowdhury & Rabin Chakrabortty & Subodh Chandra Pal & Mohammad Khalid Al-Sadoon & Romulus Costache & Abu Reza Md. Towfiqul Islam, 2023. "Flood Susceptibility Modeling Using an Advanced Deep Learning-Based Iterative Classifier Optimizer," Land, MDPI, vol. 12(4), pages 1-26, April.
    2. Dibyendu Samantaray & Chandranath Chatterjee & Rajendra Singh & Praveen Gupta & Sushma Panigrahy, 2015. "Flood risk modeling for optimal rice planning for delta region of Mahanadi river basin in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 347-372, March.
    3. Álvarez, Xana & Gómez-Rúa, María & Vidal-Puga, Juan, 2019. "Risk prevention of land flood: A cooperative game theory approach," MPRA Paper 91515, University Library of Munich, Germany.
    4. Mahnaz Gumrukcuoglu & Douglas Goodin & Charles Martin, 2010. "Landuse change in upper Kansas river floodplain: following the 1993 flood," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(2), pages 467-479, November.
    5. Yunlan Zhang & Xiaomin Jiang & Feng Zhang, 2024. "Urban Flood Resilience Assessment of Zhengzhou Considering Social Equity and Human Awareness," Land, MDPI, vol. 13(1), pages 1-22, January.
    6. Joy Sanyal & Patrice Carbonneau & Alexander Densmore, 2013. "Hydraulic routing of extreme floods in a large ungauged river and the estimation of associated uncertainties: a case study of the Damodar River, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1153-1177, March.
    7. Zhicheng Wang & Zhiqiang Gao, 2022. "Dynamic monitoring of flood disaster based on remote sensing data cube," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3123-3138, December.
    8. Boni Su & Hong Huang & Yuntao Li, 2016. "Integrated simulation method for waterlogging and traffic congestion under urban rainstorms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 23-40, March.
    9. Asif Sajjad & Jianzhong Lu & Xiaoling Chen & Sohail Yousaf & Nausheen Mazhar & Salman Shuja, 2024. "Flood hazard assessment in Chenab River basin using hydraulic simulation modeling and remote sensing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(8), pages 7679-7700, June.
    10. Sushila Rijal & Bhagawat Rimal & Sean Sloan, 2018. "Flood Hazard Mapping of a Rapidly Urbanizing City in the Foothills (Birendranagar, Surkhet) of Nepal," Land, MDPI, vol. 7(2), pages 1-13, May.
    11. Rajesh Kumar & Prasenjit Acharya, 2016. "Flood hazard and risk assessment of 2014 floods in Kashmir Valley: a space-based multisensor approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 437-464, October.
    12. Gaurav Talukdar & Janaki Ballav Swain & Kanhu Charan Patra, 2021. "Flood inundation mapping and hazard assessment of Baitarani River basin using hydrologic and hydraulic model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 389-403, October.
    13. Chen Cao & Peihua Xu & Yihong Wang & Jianping Chen & Lianjing Zheng & Cencen Niu, 2016. "Flash Flood Hazard Susceptibility Mapping Using Frequency Ratio and Statistical Index Methods in Coalmine Subsidence Areas," Sustainability, MDPI, vol. 8(9), pages 1-18, September.
    14. Yamei Wang & Zhongwu Li & Zhenghong Tang & Guangming Zeng, 2011. "A GIS-Based Spatial Multi-Criteria Approach for Flood Risk Assessment in the Dongting Lake Region, Hunan, Central China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3465-3484, October.
    15. Bhagawat Rimal & Lifu Zhang & Hamidreza Keshtkar & Xuejian Sun & Sushila Rijal, 2018. "Quantifying the Spatiotemporal Pattern of Urban Expansion and Hazard and Risk Area Identification in the Kaski District of Nepal," Land, MDPI, vol. 7(1), pages 1-22, March.
    16. Y. Yang & Patrick Ray & Casey Brown & Abedalrazq Khalil & Winston Yu, 2015. "Estimation of flood damage functions for river basin planning: a case study in Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2773-2791, February.
    17. Ahmad Rajabi & Saeid Shabanlou & Fariborz Yosefvand & Afshin Kiani, 2021. "Exploring the sample size and replications scenarios effect on spatial prediction of flood, using MARS and MaxEnt methods case study: saliantape catchment, Golestan, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 871-901, October.
    18. Boni Su & Hong Huang & Yuntao Li, 2016. "Integrated simulation method for waterlogging and traffic congestion under urban rainstorms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 23-40, March.
    19. Yadong Zhang & Zongkun Li & Jianyou Wang & Wei Ge & Xinyan Guo & Te Wang, 2023. "Influence of soil infiltration and geomorphic change on main parameters of dam-break floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2223-2236, February.
    20. Susmita Ghosh & Md. Mofizul Hoque & Aznarul Islam & Suman Deb Barman & Sadik Mahammad & Abdur Rahman & Nishith Kumar Maji, 2023. "Characterizing floods and reviewing flood management strategies for better community resilience in a tropical river basin, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1799-1832, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjopen:v:5:y:2022:i:4:p:28-426:d:937640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.