IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i4p3490-d1070610.html
   My bibliography  Save this article

Effect of Organic Compounds on the Special Properties and the Microstructure of Autoclaved Brick

Author

Listed:
  • Ryszard Dachowski

    (Civil Engineering and Architecture Department, Kielce University of Technology, 25-314 Kielce, Poland)

  • Anna Stepien

    (Civil Engineering and Architecture Department, Kielce University of Technology, 25-314 Kielce, Poland)

Abstract

After a long decomposition process, organic matter turns into humic substances. In humus, carbon dioxide (CO 2 ) bound in photosynthesis is brought back to the soil, where it should be used by its ecosystem. This is important because similar relationships are found in modern concretes and concretes designed with the use of geochemical modeling (possibility of the C-S-H phase for storing harmful substances). The aim of the article was to investigate the possibility of using humus (Humus Active-HA) and vermicompost (Biohumus Extra Universal-BEU), i.e., organic matter resulting from a long process of biological decomposition in the production of autoclaved bricks containing only ecological materials, i.e., sand, lime, and water. Tests of compressive strength, density, microstructure based on SEM, XRD, and micro-CT analysis were performed. The results of the research indicate that humus and vermicompost can be successfully used in their production. The paper compares traditional products and products made of raw material mass containing 3%, 7%, and 11% of humus and vermicompost, using the apparatus of mathematical experiment planning. Compressive strength, volumetric density, water absorption, and wicking, porosity, and material microstructure were tested. The best results were obtained for samples with the addition of 7% humus and 3% vermicompost. The compressive strength increased to 42.04 MPa (compared to standard bricks, whose strength is 15–20 MPa), and the bulk density increased by about 55%, to the value of 2.11 kg/dm 3 , which indicates the densification of the material’s microstructure. They were characterized by the highest compressive strength, moderate water absorption, and a high proportion of closed pores in the sample.

Suggested Citation

  • Ryszard Dachowski & Anna Stepien, 2023. "Effect of Organic Compounds on the Special Properties and the Microstructure of Autoclaved Brick," IJERPH, MDPI, vol. 20(4), pages 1-22, February.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3490-:d:1070610
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/4/3490/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/4/3490/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liudmila Tripolskaja & Asta Kazlauskaite-Jadzevice & Eugenija Baksiene & Almantas Razukas, 2022. "Changes in Organic Carbon in Mineral Topsoil of a Formerly Cultivated Arenosol under Different Land Uses in Lithuania," Agriculture, MDPI, vol. 12(4), pages 1-19, March.
    2. Aneta Kowalska & Anna Grobelak & Åsgeir R. Almås & Bal Ram Singh, 2020. "Effect of Biowastes on Soil Remediation, Plant Productivity and Soil Organic Carbon Sequestration: A Review," Energies, MDPI, vol. 13(21), pages 1-24, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aneta Kowalska & Marek Kucbel & Anna Grobelak, 2021. "Potential and Mechanisms for Stable C Storage in the Post-Mining Soils under Long-Term Study in Mitigation of Climate Change," Energies, MDPI, vol. 14(22), pages 1-15, November.
    2. Maja Radziemska & Mariusz Zygmunt Gusiatin & Zbigniew Mazur & Algirdas Radzevičius & Agnieszka Bęś & Raimondas Šadzevičius & Jiri Holatko & Midona Dapkienė & Inga Adamonytė & Martin Brtnicky, 2023. "Composite Biochar with Municipal Sewage Sludge Compost—A New Approach to Phytostabilization of PTE Industrially Contaminated Soils," Energies, MDPI, vol. 16(4), pages 1-11, February.
    3. Tanja Srejić & Sanja Manojlović & Mikica Sibinović & Branislav Bajat & Ivan Novković & Marko V. Milošević & Ivana Carević & Mirjana Todosijević & Marko G. Sedlak, 2023. "Agricultural Land Use Changes as a Driving Force of Soil Erosion in the Velika Morava River Basin, Serbia," Agriculture, MDPI, vol. 13(4), pages 1-27, March.
    4. Changsong Zhang & Xueke Zang & Zhenxue Dai & Xiaoying Zhang & Ziqi Ma, 2021. "Remediation Techniques for Cadmium-Contaminated Dredged River Sediments after Land Disposal," Sustainability, MDPI, vol. 13(11), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3490-:d:1070610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.