IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i11p6030-d1161855.html
   My bibliography  Save this article

Ecogeographic Drivers of the Spatial Spread of Highly Pathogenic Avian Influenza Outbreaks in Europe and the United States, 2016–Early 2022

Author

Listed:
  • Jonathon D. Gass

    (Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
    Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA)

  • Nichola J. Hill

    (Department of Biology, University of Massachusetts, Boston, Boston, MA 02125, USA)

  • Lambodhar Damodaran

    (Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA)

  • Elena N. Naumova

    (Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02155, USA)

  • Felicia B. Nutter

    (Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA)

  • Jonathan A. Runstadler

    (Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA)

Abstract

H5Nx highly pathogenic avian influenza (HPAI) viruses of clade 2.3.4.4 have caused outbreaks in Europe among wild and domestic birds since 2016 and were introduced to North America via wild migratory birds in December 2021. We examined the spatiotemporal extent of HPAI viruses across continents and characterized ecological and environmental predictors of virus spread between geographic regions by constructing a Bayesian phylodynamic generalized linear model (phylodynamic-GLM). The findings demonstrate localized epidemics of H5Nx throughout Europe in the first several years of the epizootic, followed by a singular branching point where H5N1 viruses were introduced to North America, likely via stopover locations throughout the North Atlantic. Once in the United States (US), H5Nx viruses spread at a greater rate between US-based regions as compared to prior spread in Europe. We established that geographic proximity is a predictor of virus spread between regions, implying that intercontinental transport across the Atlantic Ocean is relatively rare. An increase in mean ambient temperature over time was predictive of reduced H5Nx virus spread, which may reflect the effect of climate change on declines in host species abundance, decreased persistence of the virus in the environment, or changes in migratory patterns due to ecological alterations. Our data provide new knowledge about the spread and directionality of H5Nx virus dispersal in Europe and the US during an actively evolving intercontinental outbreak, including predictors of virus movement between regions, which will contribute to surveillance and mitigation strategies as the outbreak unfolds, and in future instances of uncontained avian spread of HPAI viruses.

Suggested Citation

  • Jonathon D. Gass & Nichola J. Hill & Lambodhar Damodaran & Elena N. Naumova & Felicia B. Nutter & Jonathan A. Runstadler, 2023. "Ecogeographic Drivers of the Spatial Spread of Highly Pathogenic Avian Influenza Outbreaks in Europe and the United States, 2016–Early 2022," IJERPH, MDPI, vol. 20(11), pages 1-17, June.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:11:p:6030-:d:1161855
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/11/6030/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/11/6030/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gytis Dudas & Luiz Max Carvalho & Trevor Bedford & Andrew J. Tatem & Guy Baele & Nuno R. Faria & Daniel J. Park & Jason T. Ladner & Armando Arias & Danny Asogun & Filip Bielejec & Sarah L. Caddy & Mat, 2017. "Virus genomes reveal factors that spread and sustained the Ebola epidemic," Nature, Nature, vol. 544(7650), pages 309-315, April.
    2. Alexei J Drummond & Simon Y W Ho & Matthew J Phillips & Andrew Rambaut, 2006. "Relaxed Phylogenetics and Dating with Confidence," PLOS Biology, Public Library of Science, vol. 4(5), pages 1-1, March.
    3. Julia B Wenger & Elena N Naumova, 2010. "Seasonal Synchronization of Influenza in the United States Older Adult Population," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-11, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoli Wang & Shuangsheng Wu & C Raina MacIntyre & Hongbin Zhang & Weixian Shi & Xiaomin Peng & Wei Duan & Peng Yang & Yi Zhang & Quanyi Wang, 2015. "Using an Adjusted Serfling Regression Model to Improve the Early Warning at the Arrival of Peak Timing of Influenza in Beijing," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.
    2. Supachai Nakapan & Nitin Kumar Tripathi & Taravudh Tipdecho & Marc Souris, 2012. "Spatial Diffusion of Influenza Outbreak-Related Climate Factors in Chiang Mai Province, Thailand," IJERPH, MDPI, vol. 9(11), pages 1-19, October.
    3. Joachim Schmidt & Lars Opgenoorth & Steffen Höll & Ralf Bastrop, 2012. "Into the Himalayan Exile: The Phylogeography of the Ground Beetle Ethira clade Supports the Tibetan Origin of Forest-Dwelling Himalayan Species Groups," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-15, September.
    4. Dinesh Aggarwal & Ben Warne & Aminu S. Jahun & William L. Hamilton & Thomas Fieldman & Louis Plessis & Verity Hill & Beth Blane & Emmeline Watkins & Elizabeth Wright & Grant Hall & Catherine Ludden & , 2022. "Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Iliana Bista & Jonathan M. D. Wood & Thomas Desvignes & Shane A. McCarthy & Michael Matschiner & Zemin Ning & Alan Tracey & James Torrance & Ying Sims & William Chow & Michelle Smith & Karen Oliver & , 2023. "Genomics of cold adaptations in the Antarctic notothenioid fish radiation," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Haitao Shang & Daniel H. Rothman & Gregory P. Fournier, 2022. "Oxidative metabolisms catalyzed Earth’s oxygenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Yutong Zhang & Ryan B. Simpson & Lauren E. Sallade & Emily Sanchez & Kyle M. Monahan & Elena N. Naumova, 2022. "Evaluating Completeness of Foodborne Outbreak Reporting in the United States, 1998–2019," IJERPH, MDPI, vol. 19(5), pages 1-19, March.
    8. Nan Song & Ai-Ping Liang, 2013. "A Preliminary Molecular Phylogeny of Planthoppers (Hemiptera: Fulgoroidea) Based on Nuclear and Mitochondrial DNA Sequences," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-11, March.
    9. Saúl F. Domínguez-Guerrero & Fausto R. Méndez-de la Cruz & Norma L. Manríquez-Morán & Mark E. Olson & Patricia Galina-Tessaro & Diego M. Arenas-Moreno & Adán Bautista- del Moral & Adriana Benítez-Vill, 2022. "Exceptional parallelisms characterize the evolutionary transition to live birth in phrynosomatid lizards," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Ryan B. Simpson & Sofia Babool & Maia C. Tarnas & Paulina M. Kaminski & Meghan A. Hartwick & Elena N. Naumova, 2021. "Signatures of Cholera Outbreak during the Yemeni Civil War, 2016–2019," IJERPH, MDPI, vol. 19(1), pages 1-29, December.
    11. Mekala Sundaram & Janna R Willoughby & Nathanael I Lichti & Michael A Steele & Robert K Swihart, 2015. "Segregating the Effects of Seed Traits and Common Ancestry of Hardwood Trees on Eastern Gray Squirrel Foraging Decisions," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-16, June.
    12. Mercedes M Burns & Marshal Hedin & Jeffrey W Shultz, 2013. "Comparative Analyses of Reproductive Structures in Harvestmen (Opiliones) Reveal Multiple Transitions from Courtship to Precopulatory Antagonism," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-11, June.
    13. Nico Neureiter & Peter Ranacher & Nour Efrat-Kowalsky & Gereon A. Kaiping & Robert Weibel & Paul Widmer & Remco R. Bouckaert, 2022. "Detecting contact in language trees: a Bayesian phylogenetic model with horizontal transfer," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-14, December.
    14. Andrew F Magee & Sebastian Höhna & Tetyana I Vasylyeva & Adam D Leaché & Vladimir N Minin, 2020. "Locally adaptive Bayesian birth-death model successfully detects slow and rapid rate shifts," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-23, October.
    15. Stéphane Aris-Brosou, 2007. "Dating Phylogenies with Hybrid Local Molecular Clocks," PLOS ONE, Public Library of Science, vol. 2(9), pages 1-8, September.
    16. Michael D Nowak & Andrew B Smith & Carl Simpson & Derrick J Zwickl, 2013. "A Simple Method for Estimating Informative Node Age Priors for the Fossil Calibration of Molecular Divergence Time Analyses," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-13, June.
    17. Alexandra Gavryushkina & David Welch & Tanja Stadler & Alexei J Drummond, 2014. "Bayesian Inference of Sampled Ancestor Trees for Epidemiology and Fossil Calibration," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-15, December.
    18. Ayaz Hyder & David L Buckeridge & Brian Leung, 2013. "Predictive Validation of an Influenza Spread Model," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-20, June.
    19. Elena N. Naumova & Ryan B. Simpson & Bingjie Zhou & Meghan A. Hartwick, 2022. "Global seasonal and pandemic patterns in influenza: An application of longitudinal study designs," International Statistical Review, International Statistical Institute, vol. 90(S1), pages 82-95, December.
    20. Bethany L Dearlove & Simon D W Frost, 2015. "Measuring Asymmetry in Time-Stamped Phylogenies," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:11:p:6030-:d:1161855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.