IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i22p14968-d971807.html
   My bibliography  Save this article

Lead Responses and Tolerance Mechanisms of Koelreuteria paniculata : A Newly Potential Plant for Sustainable Phytoremediation of Pb-Contaminated Soil

Author

Listed:
  • Rongkui Su

    (School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
    PowerChina Zhongnan Engineering Corporation Limited, Changsha 410004, China
    These authors contributed equally to this work.)

  • Tianzhi Xie

    (School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
    These authors contributed equally to this work.)

  • Haisong Yao

    (School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
    These authors contributed equally to this work.)

  • Yonghua Chen

    (School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China)

  • Hanqing Wang

    (School of Civil Engineering, Central South Forestry University, Changsha 410018, China
    Hunan Engineering Research Center of Full Life-Cycle Energy-Efficient Buildings and Environmental Health, Changsha 410018, China)

  • Xiangrong Dai

    (PowerChina Zhongnan Engineering Corporation Limited, Changsha 410004, China)

  • Yangyang Wang

    (College of Geography and Environmental Science, Henan University, Kaifeng 475004, China)

  • Lei Shi

    (College of Environmental Engineering, Henan University of Engineering, Zhengzhou 451191, China)

  • Yiting Luo

    (Business College, Hunan First Normal University, Changsha 410205, China)

Abstract

Phytoremediation could be an alternative strategy for lead (Pb) contamination. K. paniculata has been reported as a newly potential plant for sustainable phytoremediation of Pb-contaminated soil. Physiological indexes, enrichment accumulation characteristics, Pb subcellular distribution and microstructure of K. paniculata were carefully studied at different levels of Pb stress (0–1200 mg/L). The results showed that plant growth increased up to 123.8% and 112.7%, relative to the control group when Pb stress was 200 mg/L and 400 mg/L, respectively. However, the average height and biomass of K. paniculata decrease when the Pb stress continues to increase. In all treatment groups, the accumulation of Pb in plant organs showed a trend of root > stem > leaf, and Pb accumulation reached 81.31%~86.69% in the root. Chlorophyll content and chlorophyll a/b showed a rising trend and then fell with increasing Pb stress. Catalase (CAT) and peroxidase (POD) activity showed a positive trend followed by a negative decline, while superoxide dismutase (SOD) activity significantly increased with increasing levels of Pb exposure stress. Transmission electron microscopy (TEM) showed that Pb accumulates in the inactive metabolic regions (cell walls and vesicles) in roots and stems, which may be the main mechanism for plants to reduce Pb biotoxicity. Fourier transform infrared spectroscopy (FTIR) showed that Pb stress increased the content of intracellular -OH and -COOH functional groups. Through organic acids, polysaccharides, proteins and other compounds bound to Pb, the adaptation and tolerance of K. paniculata to Pb were enhanced. K. paniculata showed good phytoremediation potential and has broad application prospects for heavy metal-contaminated soil.

Suggested Citation

  • Rongkui Su & Tianzhi Xie & Haisong Yao & Yonghua Chen & Hanqing Wang & Xiangrong Dai & Yangyang Wang & Lei Shi & Yiting Luo, 2022. "Lead Responses and Tolerance Mechanisms of Koelreuteria paniculata : A Newly Potential Plant for Sustainable Phytoremediation of Pb-Contaminated Soil," IJERPH, MDPI, vol. 19(22), pages 1-16, November.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:22:p:14968-:d:971807
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/22/14968/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/22/14968/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rongkui Su & Yangyang Wang & Shunhong Huang & Runhua Chen & Jun Wang, 2022. "Application for Ecological Restoration of Contaminated Soil: Phytoremediation," IJERPH, MDPI, vol. 19(20), pages 1-6, October.
    2. Liping Li & Lanfang Han & Aiju Liu & Fayuan Wang, 2022. "Imperfect but Hopeful: New Advances in Soil Pollution and Remediation," IJERPH, MDPI, vol. 19(16), pages 1-3, August.
    3. Rongkui Su & Qiqi Ou & Hanqing Wang & Yiting Luo & Xiangrong Dai & Yangyang Wang & Yonghua Chen & Lei Shi, 2022. "Comparison of Phytoremediation Potential of Nerium indicum with Inorganic Modifier Calcium Carbonate and Organic Modifier Mushroom Residue to Lead–Zinc Tailings," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kinga Drzewiecka & Przemysław Gawrysiak & Magdalena Woźniak & Michał Rybak, 2023. "Metal Accumulation and Tolerance of Energy Willow to Copper and Nickel under Simulated Drought Conditions," Sustainability, MDPI, vol. 15(17), pages 1-14, August.
    2. Mengke He & Junxing Yang & Guodi Zheng & Junmei Guo & Chuang Ma, 2023. "Comprehensive Evaluation of the Efficient and Safe Utilization of Two Varieties of Winter Rapeseed Grown on Cadmium- and Lead-Contaminated Farmland under Atmospheric Deposition," Sustainability, MDPI, vol. 15(15), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qianrong Jiang & Honglei Chen & Zeding Fu & Xiaohua Fu & Jiacheng Wang & Yingqi Liang & Hailong Yin & Junbo Yang & Jie Jiang & Xinxin Yang & He Wang & Zhiming Liu & Rongkui Su, 2022. "Current Progress, Challenges and Perspectives in the Microalgal-Bacterial Aerobic Granular Sludge Process: A Review," IJERPH, MDPI, vol. 19(21), pages 1-19, October.
    2. Suxin Zhang & Cheng Hu & Jiemin Cheng, 2022. "A Comprehensive Evaluation System for the Stabilization Effect of Heavy Metal-Contaminated Soil Based on Analytic Hierarchy Process," IJERPH, MDPI, vol. 19(22), pages 1-18, November.
    3. Rongkui Su & Hongguo Zhang & Feng Chen & Zhenxing Wang & Lei Huang, 2022. "Applications of Single Atom Catalysts for Environmental Management," IJERPH, MDPI, vol. 19(18), pages 1-6, September.
    4. Múcio Magno de Melo Farnezi & Enilson de Barros Silva & Lauana Lopes dos Santos & Alexandre Christofaro Silva & Paulo Henrique Grazziotti & Luís Reynaldo Ferracciú Alleoni & Wesley Costa Silva & Angel, 2022. "Potential of Forage Grasses in Phytoremediation of Lead through Production of Phytoliths in Contaminated Soils," Land, MDPI, vol. 12(1), pages 1-10, December.
    5. Jie Xiang & Peiwei Xu & Weizhong Chen & Xiaofeng Wang & Zhijian Chen & Dandan Xu & Yuan Chen & Mingluan Xing & Ping Cheng & Lizhi Wu & Bing Zhu, 2022. "Pollution Characteristics and Health Risk Assessment of Heavy Metals in Agricultural Soils over the Past Five Years in Zhejiang, Southeast China," IJERPH, MDPI, vol. 19(22), pages 1-14, November.
    6. Rongkui Su & Xiangrong Dai & Hanqing Wang & Zhixiang Wang & Zishi Li & Yonghua Chen & Yiting Luo & Danxia Ouyang, 2022. "Metronidazole Degradation by UV and UV/H 2 O 2 Advanced Oxidation Processes: Kinetics, Mechanisms, and Effects of Natural Water Matrices," IJERPH, MDPI, vol. 19(19), pages 1-19, September.
    7. Rongkui Su & Yangyang Wang & Shunhong Huang & Runhua Chen & Jun Wang, 2022. "Application for Ecological Restoration of Contaminated Soil: Phytoremediation," IJERPH, MDPI, vol. 19(20), pages 1-6, October.
    8. Jingdong Wu & Mingxu Wang & Tingting Wang & Xinxi Fu, 2022. "Evaluation of Ecological Service Function of Liquidambar formosana Plantations," IJERPH, MDPI, vol. 19(22), pages 1-16, November.
    9. Hanlin Feng & Jiemin Cheng, 2023. "Whole-Process Risk Management of Soil Amendments for Remediation of Heavy Metals in Agricultural Soil—A Review," IJERPH, MDPI, vol. 20(3), pages 1-14, January.
    10. Shakeel Ahmad & Fazal Hadi & Amin Ullah Jan & Raza Ullah & Bedur Faleh A. Albalawi & Allah Ditta, 2022. "Appraisal of Heavy Metals Accumulation, Physiological Response, and Human Health Risks of Five Crop Species Grown at Various Distances from Traffic Highway," Sustainability, MDPI, vol. 14(23), pages 1-18, December.
    11. Ruan, Xinling & Ge, Shiji & Jiao, Zhiqiang & Zhan, Wenhao & Wang, Yangyang, 2023. "Bioaccumulation and risk assessment of potential toxic elements in the soil-vegetable system as influenced by historical wastewater irrigation," Agricultural Water Management, Elsevier, vol. 279(C).
    12. Yidan Li & Yanyan Song & Jing Zhang & Yingxin Wan, 2023. "Phytoremediation Competence of Composite Heavy-Metal-Contaminated Sediments by Intercropping Myriophyllum spicatum L. with Two Species of Plants," IJERPH, MDPI, vol. 20(4), pages 1-12, February.
    13. Carolina Faccio Demarco & Maurízio Silveira Quadro & Filipe Selau Carlos & Simone Pieniz & Luiza Beatriz Gamboa Araújo Morselli & Robson Andreazza, 2023. "Bioremediation of Aquatic Environments Contaminated with Heavy Metals: A Review of Mechanisms, Solutions and Perspectives," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    14. Yu-Le Zhang & Guan-Di He & Ye-Qing He & Teng-Bing He, 2022. "Bibliometrics-Based: Trends in Phytoremediation of Potentially Toxic Elements in Soil," Land, MDPI, vol. 11(11), pages 1-16, November.
    15. Ting Liang & Lianfang Li, 2023. "Arsenic Immobilization for Paddy Field and Improvement of Rice ( Oryza sativa L.) Growth through Cerium–Manganese Modified Wheat Straw Biochar Application," Sustainability, MDPI, vol. 15(23), pages 1-17, November.
    16. João Marcelo-Silva & Masego Ramabu & Stefan John Siebert, 2023. "Phytoremediation and Nurse Potential of Aloe Plants on Mine Tailings," IJERPH, MDPI, vol. 20(2), pages 1-10, January.
    17. Chenglin Yuan & Siqi Liang & Xiaohong Wu & Taimoor Hassan Farooq & Tingting Liu & Yu Hu & Guangjun Wang & Jun Wang & Wende Yan, 2022. "Land Use Changes Influence the Soil Enzymatic Activity and Nutrient Status in the Polluted Taojia River Basin in Sub-Tropical China," IJERPH, MDPI, vol. 19(21), pages 1-10, October.
    18. Sitong Gong & Hu Wang & Fei Lou & Ran Qin & Tianling Fu, 2022. "Calcareous Materials Effectively Reduce the Accumulation of Cd in Potatoes in Acidic Cadmium-Contaminated Farmland Soils in Mining Areas," IJERPH, MDPI, vol. 19(18), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:22:p:14968-:d:971807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.