IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i12p7391-d840271.html
   My bibliography  Save this article

Vegetation Responses to Climate Change and Anthropogenic Activity in China, 1982 to 2018

Author

Listed:
  • Jie Li

    (College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
    Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng 475004, China)

  • Mengfei Xi

    (College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
    Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng 475004, China)

  • Lijun Wang

    (College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
    Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng 475004, China)

  • Ning Li

    (College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
    Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng 475004, China
    Henan Industrial Technology Academy of Spatio-Temporal Big Data, Henan Univesity, Kaifeng 475004, China)

  • Huawei Wang

    (College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
    Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng 475004, China)

  • Fen Qin

    (College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
    Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng 475004, China
    Henan Industrial Technology Academy of Spatio-Temporal Big Data, Henan Univesity, Kaifeng 475004, China
    Henan Technology Innovation Center of Spatial-Temporal Big Data, Henan University, Kaifeng 475004, China)

Abstract

Climate change and human activities significantly affect vegetation growth in terrestrial ecosystems. Here, data reconstruction was performed to obtain a time series of the normalized difference vegetation index (NDVI) for China (1982–2018) based on Savitzky–Golay filtered GIMMS NDVI3g and MOD13A2 datasets. Combining surface temperature and precipitation observations from more than 2000 meteorological stations in China, Theil–Sen trend analysis, Mann–Kendall significance tests, Pearson correlation analysis, and residual trend analysis were used to quantitatively analyze the long-term trends of vegetation changes and their sources of uncertainty. Significant spatial and temporal heterogeneity was observed in vegetation changes in the study area. From 1982 to 2018, the vegetation showed a gradually increasing trend, at a rate of 0.5%·10 a −1 , significantly improving (37.15%, p < 0.05) more than the significant degradation (7.46%, p < 0.05). Broadleaf (0.66) and coniferous forests (0.62) had higher NDVI, and farmland had the fastest rate of increase (1.02%/10 a −1 ). Temperature significantly affected the vegetation growth in spring (R > 0; p < 0.05); however, the increase in summer temperatures significantly inhibited (R < 0; p < 0.05) the growth in North China (R NDVI-tem = −0.379) and the Qinghai–Tibetan Plateau (R NDVI-tem = −0.051). Climate change has highly promoted the growth of vegetation in the plain region of the Changjiang (Yangtze) River (3.24%), Northwest China (1.07%). Affected by human activities only, 49.89% of the vegetation showed an increasing trend, of which 22.91% increased significantly ( p < 0.05) and 9.97% decreased significantly ( p < 0.05). Emergency mitigation actions are required in Northeast China, Xinjiang, Northwest China, and the Qinghai–Tibetan Plateau. Therefore, monitoring vegetation changes is important for ecological environment construction and promoting regional ecological protection.

Suggested Citation

  • Jie Li & Mengfei Xi & Lijun Wang & Ning Li & Huawei Wang & Fen Qin, 2022. "Vegetation Responses to Climate Change and Anthropogenic Activity in China, 1982 to 2018," IJERPH, MDPI, vol. 19(12), pages 1-20, June.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:12:p:7391-:d:840271
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/12/7391/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/12/7391/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Buitenwerf & Laura Rose & Steven I. Higgins, 2015. "Three decades of multi-dimensional change in global leaf phenology," Nature Climate Change, Nature, vol. 5(4), pages 364-368, April.
    2. Liangsheng Zhang & Haijiang Luo & Xuezhen Zhang, 2022. "Land-Greening Hotspot Changes in the Yangtze River Economic Belt during the Last Four Decades and Their Connections to Human Activities," Land, MDPI, vol. 11(5), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao Song & Qiyin Yu & Ruixia Wang & Guofa Cui, 2021. "Radiating Benefit of Windbreak and Sand Fixation in the Baijitan Nature Reserve of Lingwu, Ningxia, China," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
    2. Meirui Li & Baolei Zhang & Xiaobo Zhang & Shumin Zhang & Le Yin, 2023. "Exploring Spatio-Temporal Variations of Ecological Risk in the Yellow River Ecological Economic Belt Based on an Improved Landscape Index Method," IJERPH, MDPI, vol. 20(3), pages 1-17, January.
    3. Lin, Ying & Yang, Xiuyun & Li, Yanan & Yao, Shunbo, 2020. "The effect of forest on PM2.5 concentrations: A spatial panel approach," Forest Policy and Economics, Elsevier, vol. 118(C).
    4. Qin Wang & Qin Ju & Yueyang Wang & Quanxi Shao & Rongrong Zhang & Yanli Liu & Zhenchun Hao, 2022. "Vegetation Changing Patterns and Its Sensitivity to Climate Variability across Seven Major Watersheds in China," IJERPH, MDPI, vol. 19(21), pages 1-19, October.
    5. Haoming Xia & Ainong Li & Gary Feng & Yang Li & Yaochen Qin & Guangbin Lei & Yaoping Cui, 2018. "The Effects of Asymmetric Diurnal Warming on Vegetation Growth of the Tibetan Plateau over the Past Three Decades," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    6. Georgeta Bandoc & Adrian Piticar & Cristian Patriche & Bogdan Roșca & Elena Dragomir, 2022. "Climate Warming-Induced Changes in Plant Phenology in the Most Important Agricultural Region of Romania," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    7. Zhang, Hui & Zhang, Xin & Shang, Yi & Kattel, Giri & Miao, Lijuan, 2021. "Continuously vegetation greening over Inner Mongolia for the past three decades," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 13(13).
    8. Tongning Li & Daozheng Li & Diling Liang & Simin Huang, 2022. "Coupling Coordination Degree of Ecological-Economic and Its Influencing Factors in the Counties of Yangtze River Economic Belt," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    9. Zhifang Pei & Shibo Fang & Wunian Yang & Lei Wang & Mingyan Wu & Qifei Zhang & Wei Han & Dao Nguyen Khoi, 2019. "The Relationship between NDVI and Climate Factors at Different Monthly Time Scales: A Case Study of Grasslands in Inner Mongolia, China (1982–2015)," Sustainability, MDPI, vol. 11(24), pages 1-17, December.
    10. Yanzhen Hou & Zhenlong Zhang & Yuerong Wang & Honghu Sun & Chang Xu, 2022. "Function Evaluation and Coordination Analysis of Production–Living–Ecological Space Based on the Perspective of Type–Intensity–Connection: A Case Study of Suzhou, China," Land, MDPI, vol. 11(11), pages 1-21, November.
    11. Mohammed Ifkirne & Quentin Beri & Alex Schaefer & Quoc Bao Pham & Siham Acharki & Abdelouahed Farah, 2022. "Study of the impact of ash fallout from the Icelandic volcano Eyjafjöll (2010) on vegetation using MODIS data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3811-3831, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:12:p:7391-:d:840271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.