IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i11p6639-d827291.html
   My bibliography  Save this article

Natural Cyanobacteria Removers Obtained from Bio-Waste Date-Palm Leaf Stalks and Black Alder Cone-Like Flowers

Author

Listed:
  • Irina Kandić

    (“Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia)

  • Milan Kragović

    (“Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia)

  • Jugoslav B. Krstić

    (Centre for Catalysis and Chemical Engineering, National Institute, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia)

  • Jelena Gulicovski

    (“Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia)

  • Jasmina Popović

    (Department of Chemical and Mechanical Wood Processing, Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia)

  • Milena Rosić

    (“Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia)

  • Vesna Karadžić

    (Institute of Public Health of Serbia Dr. Milan Jovanović Batut, dr Subotića 5, 11000 Belgrade, Serbia)

  • Marija Stojmenović

    (“Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia)

Abstract

The impact of urbanization and modern agricultural practice has led to accelerated eutrophication of aquatic ecosystems, which has resulted in the massive development of cyanobacteria. Very often, in response to various environmental influences, cyanobacteria produce potentially carcinogenic cyanotoxins. Long-term human exposure to cyanotoxins, through drinking water as well as recreational water (i.e., rivers or lakes), can cause serious health consequences. In order to overcome this problem, this paper presents the synthesis of completely new activated carbons and their potential application in contaminated water treatment. The synthesis and characterization of new active carbon materials obtained from waste biomass, date-palm leaf stalks (P_AC) and black alder cone-like flowers (A_AC) of reliable physical and chemical characteristics were presented in this article. The commercial activated carbon (C_AC) was also examined for the purpose of comparisons with the obtained materials. The detailed characterization of materials was carried out by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), low-temperature N 2 physisorption, and Field emission scanning electron microscopy (FESEM). Preliminary analyzes of the adsorption capacities of all activated carbon materials were conducted on water samples from Aleksandrovac Lake (Southern part of Serbia), as a eutrophic lake, in order to remove Cyanobacteria from water. The results after 24 h showed removal efficiencies for P_AC, A_AC, and C_AC of 99.99%, 99.99% and 89.79%, respectively.

Suggested Citation

  • Irina Kandić & Milan Kragović & Jugoslav B. Krstić & Jelena Gulicovski & Jasmina Popović & Milena Rosić & Vesna Karadžić & Marija Stojmenović, 2022. "Natural Cyanobacteria Removers Obtained from Bio-Waste Date-Palm Leaf Stalks and Black Alder Cone-Like Flowers," IJERPH, MDPI, vol. 19(11), pages 1-29, May.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:11:p:6639-:d:827291
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/11/6639/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/11/6639/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kalu Samuel Ukanwa & Kumar Patchigolla & Ruben Sakrabani & Edward Anthony & Sachin Mandavgane, 2019. "A Review of Chemicals to Produce Activated Carbon from Agricultural Waste Biomass," Sustainability, MDPI, vol. 11(22), pages 1-35, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbas, Yasir & Yun, Sining & Wang, Ziqi & Zhang, Yongwei & Zhang, Xianmei & Wang, Kaijun, 2021. "Recent advances in bio-based carbon materials for anaerobic digestion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Csaba Fogarassy & Laszlo Toth & Marton Czikkely & David Christian Finger, 2019. "Improving the Efficiency of Pyrolysis and Increasing the Quality of Gas Production through Optimization of Prototype Systems," Resources, MDPI, vol. 8(4), pages 1-14, December.
    3. Longfei Cui & Chaoyue Liu & Hui Liu & Wenke Zhao & Yaning Zhang, 2022. "Exergy Transfer Analysis of Biomass and Microwave Based on Experimental Heating Process," Sustainability, MDPI, vol. 15(1), pages 1-11, December.
    4. Abdullah, Rose Fadzilah & Rashid, Umer & Ibrahim, Mohd Lokman & Hazmi, Balkis & Alharthi, Fahad A. & Nehdi, Imededdine Arbi, 2021. "Bifunctional nano-catalyst produced from palm kernel shell via hydrothermal-assisted carbonization for biodiesel production from waste cooking oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Syafiqa Ayob & Wahid Ali Hamood Altowayti & Norzila Othman & Faisal Sheikh Khalid & Shafinaz Shahir & Husnul Azan Tajarudin & Ammar Mohammed Ali Alqadasi, 2023. "Experimental and Modeling Study on the Removal of Mn, Fe, and Zn from Fiberboard Industrial Wastewater Using Modified Activated Carbon," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    6. Minh Trung Dao & T. T. Tram Nguyen & X. Du Nguyen & D. Duong La & D. Duc Nguyen & S. W. Chang & W. J. Chung & Van Khanh Nguyen, 2020. "Toxic Metal Adsorption from Aqueous Solution by Activated Biochars Produced from Macadamia Nutshell Waste," Sustainability, MDPI, vol. 12(19), pages 1-11, September.
    7. R. Maniarasu & Sushil Kumar Rathore & S. Murugan, 2023. "Biomass-based activated carbon for CO2 adsorption–A review," Energy & Environment, , vol. 34(5), pages 1674-1721, August.
    8. Mehdi Esmaeili Bidhendi & Zahra Poursorkh & Hassan Sereshti & Hamid Rashidi Nodeh & Shahabaldin Rezania & Muhammad Afzal Kamboh, 2020. "Nano-Size Biomass Derived from Pomegranate Peel for Enhanced Removal of Cefixime Antibiotic from Aqueous Media: Kinetic, Equilibrium and Thermodynamic Study," IJERPH, MDPI, vol. 17(12), pages 1-15, June.
    9. Marcelina Sołtysik & Izabela Majchrzak-Kucęba & Dariusz Wawrzyńczak, 2022. "Bio-Waste as a Substitute for the Production of Carbon Dioxide Adsorbents: A Review," Energies, MDPI, vol. 15(19), pages 1-23, September.
    10. Awal Noor & Sher Ali Khan, 2023. "Agricultural Wastes as Renewable Biomass to Remediate Water Pollution," Sustainability, MDPI, vol. 15(5), pages 1-19, February.
    11. Cristina Moliner & Simona Focacci & Beatrice Antonucci & Aldo Moreno & Simba Biti & Fazlena Hamzah & Alfonso Martinez-Felipe & Elisabetta Arato & Claudia Fernández Martín, 2022. "Production, Activation and CO 2 Uptake Capacity of a Carbonaceous Microporous Material from Palm Oil Residues," Energies, MDPI, vol. 15(23), pages 1-12, December.
    12. Sekhon, Satpal Singh & Kaur, Prabhsharan & Park, Jin-Soo, 2021. "From coconut shell biomass to oxygen reduction reaction catalyst: Tuning porosity and nitrogen doping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:11:p:6639-:d:827291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.