IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i7p3578-d526714.html
   My bibliography  Save this article

Urban Food Takeaway Vitality: A New Technique to Assess Urban Vitality

Author

Listed:
  • Bahram Zikirya

    (College of Tourism, Xinjiang University, Urumqi 830049, China
    School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
    Key Laboratory of the Sustainable Development of Xinjiang’s Historical and Cultural Tourism, Xinjiang University, Urumqi 830046, China)

  • Xiong He

    (School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China)

  • Ming Li

    (School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China)

  • Chunshan Zhou

    (College of Tourism, Xinjiang University, Urumqi 830049, China
    School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
    Key Laboratory of the Sustainable Development of Xinjiang’s Historical and Cultural Tourism, Xinjiang University, Urumqi 830046, China)

Abstract

As one of the most important criteria for measuring the quality of urban life and the environment, urban vitality has become the focus of urban-related research and related disciplines with an increasing number of advocates for the rapid and harmonious development of urban cities. Urban takeaway can represent urban vitality, but studies have not investigated this in a quantitative manner. Furthermore, current studies rarely focus on or even mention the urban food takeaway vitality generated by the spatial distribution of urban takeaway. This study first calculated the vitality of urban takeaways based on the urban takeaway distribution, building footprint, Open Street Map (OSM) data, and the Rapidly Exploring Random Tree (RRT). Then, the urban vitality was obtained using Tencent-Yichuxing data and night-time light data, followed by a spatial correlation analysis between the urban takeaway vitality and urban vitality. Finally, the results for Beijing, Shanghai, and Guangzhou were compared, and the following conclusions were drawn: (1) there is a significant spatial correlation between the urban takeaway vitality and urban vitality, but the correlation varies in different cities at different times; and (2) even in the same city, different road and building densities have an impact on the correlation. The urban takeaway vitality proposed in this study can be used as a new index to evaluate the urban vitality, which has important theoretical and practical significance for the sustainable development of future urban cities.

Suggested Citation

  • Bahram Zikirya & Xiong He & Ming Li & Chunshan Zhou, 2021. "Urban Food Takeaway Vitality: A New Technique to Assess Urban Vitality," IJERPH, MDPI, vol. 18(7), pages 1-18, March.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:7:p:3578-:d:526714
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/7/3578/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/7/3578/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Runde Fu & Xinhuan Zhang & Degang Yang & Tianyi Cai & Yufang Zhang, 2021. "The Relationship between Urban Vibrancy and Built Environment: An Empirical Study from an Emerging City in an Arid Region," IJERPH, MDPI, vol. 18(2), pages 1-20, January.
    2. Whittemore, Andrew H. & BenDor, Todd K., 2018. "Talking about density: An empirical investigation of framing," Land Use Policy, Elsevier, vol. 72(C), pages 181-191.
    3. Shiwei Lu & Chaoyang Shi & Xiping Yang, 2019. "Impacts of Built Environment on Urban Vitality: Regression Analyses of Beijing and Chengdu, China," IJERPH, MDPI, vol. 16(23), pages 1-16, November.
    4. Wensha Gou & Siyu Huang & Qinghua Chen & Jiawei Chen & Xiaomeng Li, 2020. "Structure and Dynamic of Global Population Migration Network," Complexity, Hindawi, vol. 2020, pages 1-17, August.
    5. Miguel Lopes & Ana Camanho, 2013. "Public Green Space Use and Consequences on Urban Vitality: An Assessment of European Cities," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 113(3), pages 751-767, September.
    6. Jun Zhang & Xiong He & Xiao-Die Yuan, 2020. "Research on the relationship between Urban economic development level and urban spatial structure—A case study of two Chinese cities," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-14, July.
    7. Xia, Chang & Zhang, Anqi & Wang, Haijun & Zhang, Boen & Zhang, Yan, 2019. "Bidirectional urban flows in rapidly urbanizing metropolitan areas and their macro and micro impacts on urban growth: A case study of the Yangtze River middle reaches megalopolis, China," Land Use Policy, Elsevier, vol. 82(C), pages 158-168.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengzhe Lyu, 2024. "Exploring the Influence of Dynamic Indicators in Urban Spaces on Residents’ Environmental Behavior: A Case Study in Shanghai Utilizing Mixed-Methods Approach and Artificial Neural Network (ANN) Modeli," Sustainability, MDPI, vol. 16(8), pages 1-27, April.
    2. Jun Zhang & Runni Zhang & Qilun Li & Xue Zhang & Xiong He, 2023. "Spatial Sifferentiation and Differentiated Development Paths of Traditional Villages in Yunnan Province," Land, MDPI, vol. 12(9), pages 1-18, August.
    3. Jinghu Pan & Xiuwei Zhu & Xin Zhang, 2022. "Urban Vitality Measurement and Influence Mechanism Detection in China," IJERPH, MDPI, vol. 20(1), pages 1-24, December.
    4. Ziyu Wang & Nan Xia & Xin Zhao & Xing Gao & Sudan Zhuang & Manchun Li, 2023. "Evaluating Urban Vitality of Street Blocks Based on Multi-Source Geographic Big Data: A Case Study of Shenzhen," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    5. Danlin Yu & Chuanglin Fang, 2022. "How Neighborhood Characteristics Influence Neighborhood Crimes: A Bayesian Hierarchical Spatial Analysis," IJERPH, MDPI, vol. 19(18), pages 1-16, September.
    6. Christian Bux & Alina Cerasela Aluculesei & Simona Moagăr-Poladian, 2022. "How to Monitor the Transition to Sustainable Food Services and Lodging Accommodation Activities: A Bibliometric Approach," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    7. Jun Zhang & Xue Zhang & Xueping Tan & Xiaodie Yuan, 2022. "Extraction of Urban Built-Up Area Based on Deep Learning and Multi-Sources Data Fusion—The Application of an Emerging Technology in Urban Planning," Land, MDPI, vol. 11(8), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinyao Lin & Yaye Zhuang & Yang Zhao & Hua Li & Xiaoyu He & Siyan Lu, 2022. "Measuring the Non-Linear Relationship between Three-Dimensional Built Environment and Urban Vitality Based on a Random Forest Model," IJERPH, MDPI, vol. 20(1), pages 1-18, December.
    2. Yuan Lai & Jiatong Li & Jiachen Zhang & Lan Yan & Yifeng Liu, 2022. "Do Vibrant Places Promote Active Living? Analyzing Local Vibrancy, Running Activity, and Real Estate Prices in Beijing," IJERPH, MDPI, vol. 19(24), pages 1-19, December.
    3. Kai Zhao & Jinhan Guo & Ziying Ma & Wanshu Wu, 2023. "Exploring the Spatiotemporal Heterogeneity and Stationarity in the Relationship between Street Vitality and Built Environment," SAGE Open, , vol. 13(1), pages 21582440231, February.
    4. Yihao Jiang & Zhaojin Chen & Pingjun Sun, 2022. "Urban Shrinkage and Urban Vitality Correlation Research in the Three Northeastern Provinces of China," IJERPH, MDPI, vol. 19(17), pages 1-22, August.
    5. Hongyu Gong & Xiaozihan Wang & Zihao Wang & Ziyi Liu & Qiushan Li & Yunhan Zhang, 2022. "How Did the Built Environment Affect Urban Vibrancy? A Big Data Approach to Post-Disaster Revitalization Assessment," IJERPH, MDPI, vol. 19(19), pages 1-25, September.
    6. Wanshu Wu & Ziying Ma & Jinhan Guo & Xinyi Niu & Kai Zhao, 2022. "Evaluating the Effects of Built Environment on Street Vitality at the City Level: An Empirical Research Based on Spatial Panel Durbin Model," IJERPH, MDPI, vol. 19(3), pages 1-24, January.
    7. Wang, Xiaoxi & Zhang, Yaojun & Yu, Danlin & Qi, Jinghan & Li, Shujing, 2022. "Investigating the spatiotemporal pattern of urban vibrancy and its determinants: Spatial big data analyses in Beijing, China," Land Use Policy, Elsevier, vol. 119(C).
    8. Paköz, Muhammed Ziya & Yaratgan, Dilara & Şahin, Aydan, 2022. "Re-mapping urban vitality through Jane Jacobs’ criteria: The case of Kayseri, Turkey," Land Use Policy, Elsevier, vol. 114(C).
    9. José Sobreiro Filho & Enzo Barberio Mariano & Vinicius Amorim Sobreiro & Charbel José Chiappetta Jabbour, 2016. "Beyond the Agrarian Reform Policies in Brazil: An Empirical Study of Brazilian States from 1995 Through 2011," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 129(3), pages 1093-1114, December.
    10. Peng Gao & Dan He & Zhijing Sun & Yuemin Ning, 2020. "Characterizing functionally integrated regions in the Central Yangtze River Megaregion from a city‐network perspective," Growth and Change, Wiley Blackwell, vol. 51(3), pages 1357-1379, September.
    11. Korthals Altes, Willem K., 2019. "Planning initiative: Promoting development by the use of options in Amsterdam," Land Use Policy, Elsevier, vol. 83(C), pages 13-21.
    12. Yibo Gao & Hongwei Wang & Suyan Yi & Deping Wang & Chen Ma & Bo Tan & Yiming Wei, 2021. "Spatial and Temporal Characteristics of Hand-Foot-and-Mouth Disease and Their Influencing Factors in Urumqi, China," IJERPH, MDPI, vol. 18(9), pages 1-17, May.
    13. Kai Li & Zhili Ma & Jinjin Liu, 2019. "A New Trend in the Space–Time Distribution of Cultivated Land Occupation for Construction in China and the Impact of Population Urbanization," Sustainability, MDPI, vol. 11(18), pages 1-23, September.
    14. Zhishan Ma & Susu Zhang & Sidong Zhao, 2021. "Study on the Spatial Pattern of Migration Population in Egypt and Its Flow Field Characteristics from the Perspective of “Source-Flow-Sink”," Sustainability, MDPI, vol. 13(1), pages 1-27, January.
    15. Ziyu Wang & Nan Xia & Xin Zhao & Xing Gao & Sudan Zhuang & Manchun Li, 2023. "Evaluating Urban Vitality of Street Blocks Based on Multi-Source Geographic Big Data: A Case Study of Shenzhen," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    16. Jinghua Song & Yuyi Zhu & Xiangzhai Chu & Xiu Yang, 2024. "Research on the Vitality of Public Spaces in Tourist Villages through Social Network Analysis: A Case Study of Mochou Village in Hubei, China," Land, MDPI, vol. 13(3), pages 1-16, March.
    17. Arezou Shafaghat & Salim Ferwati & Ali Keyvanfar, 2022. "COVID-19-Adapted Multi-Functional Corniche Street Design Assessment Model: Applying Global Sensitivity Analysis (GSA) and Adaptability Analysis Methods," Sustainability, MDPI, vol. 14(17), pages 1-27, September.
    18. Huang, Xinxin & Wang, Haijun & Xiao, Fentao, 2022. "Simulating urban growth affected by national and regional land use policies: Case study from Wuhan, China," Land Use Policy, Elsevier, vol. 112(C).
    19. Xuanting Li & Xiaohong Wang & Shaopeng Zhang, 2022. "Impacts of Urban Spatial Development Patterns on Carbon Emissions: Evidence from Chinese Cities," Land, MDPI, vol. 11(11), pages 1-16, November.
    20. Su Wu & Neema Simon Sumari & Ting Dong & Gang Xu & Yanfang Liu, 2021. "Characterizing Urban Expansion Combining Concentric-Ring and Grid-Based Analysis for Latin American Cities," Land, MDPI, vol. 10(5), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:7:p:3578-:d:526714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.