Validation of a Novel Predictive Algorithm for Kidney Failure in Patients Suffering from Chronic Kidney Disease: The Prognostic Reasoning System for Chronic Kidney Disease (PROGRES-CKD)
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Justin B Echouffo-Tcheugui & Andre P Kengne, 2012. "Risk Models to Predict Chronic Kidney Disease and Its Progression: A Systematic Review," PLOS Medicine, Public Library of Science, vol. 9(11), pages 1-18, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tim Hulsen, 2022. "Data Science in Healthcare: COVID-19 and Beyond," IJERPH, MDPI, vol. 19(6), pages 1-4, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liang Li & Sheng Luo & Bo Hu & Tom Greene, 2017. "Dynamic Prediction of Renal Failure Using Longitudinal Biomarkers in a Cohort Study of Chronic Kidney Disease," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 357-378, December.
- Chin-Chuan Shih & Ssu-Han Chen & Gin-Den Chen & Chi-Chang Chang & Yu-Lin Shih, 2021. "Development of a Longitudinal Diagnosis and Prognosis in Patients with Chronic Kidney Disease: Intelligent Clinical Decision-Making Scheme," IJERPH, MDPI, vol. 18(23), pages 1-13, December.
- Chin-Chuan Shih & Chi-Jie Lu & Gin-Den Chen & Chi-Chang Chang, 2020. "Risk Prediction for Early Chronic Kidney Disease: Results from an Adult Health Examination Program of 19,270 Individuals," IJERPH, MDPI, vol. 17(14), pages 1-11, July.
- Samantha M. Bomotti & Jennifer A. Smith & Alicia L. Zagel & Jacquelyn Y. Taylor & Stephen T. Turner & Sharon L. R. Kardia, 2013. "Epigenetic Markers of Renal Function in African Americans," Nursing Research and Practice, Hindawi, vol. 2013, pages 1-9, December.
- David K E Lim & James H Boyd & Elizabeth Thomas & Aron Chakera & Sawitchaya Tippaya & Ashley Irish & Justin Manuel & Kim Betts & Suzanne Robinson, 2022. "Prediction models used in the progression of chronic kidney disease: A scoping review," PLOS ONE, Public Library of Science, vol. 17(7), pages 1-24, July.
More about this item
Keywords
chronic kidney disease (CKD); end-stage kidney disease (ESKD); kidney replacement therapy (KRT); risk prediction; artificial intelligence; machine learning; naïve Bayes classifiers; precision medicine;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:23:p:12649-:d:692274. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.