IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i8p2765-d346582.html
   My bibliography  Save this article

Does Diabetes Induce the Vascular Endothelial Growth Factor (VEGF) Expression in Periodontal Tissues? A Systematic Review

Author

Listed:
  • Gianna Maria Nardi

    (Department of Dental and Maxillofacial Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
    Gianna Maria Nardi and Elisabetta Ferrara have thus to be equally regarded as co-first authors.)

  • Elisabetta Ferrara

    (Complex Operative Unit of Odontostomatology, Hospital S.S. Annunziata, 66100 Chieti, Italy
    Gianna Maria Nardi and Elisabetta Ferrara have thus to be equally regarded as co-first authors.)

  • Ilaria Converti

    (Department of Emergency and Organ Transplantation, Division of Plastic and Reconstructive Surgery, “Aldo Moro” University of Bari, 70124 Bari, Italy)

  • Francesca Cesarano

    (Department of Dental and Maxillofacial Sciences, “Sapienza” University of Rome, 00161 Rome, Italy)

  • Salvatore Scacco

    (Department of Basic Medical Sciences, Neurosciences and Sense Organs, “Aldo Moro” University of Bari, 70124 Bari, Italy)

  • Roberta Grassi

    (Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy)

  • Antonio Gnoni

    (Department of Basic Medical Sciences, Neurosciences and Sense Organs, “Aldo Moro” University of Bari, 70124 Bari, Italy)

  • Felice Roberto Grassi

    (Department of Basic Medical Sciences, Neurosciences and Sense Organs, “Aldo Moro” University of Bari, 70124 Bari, Italy)

  • Biagio Rapone

    (Department of Basic Medical Sciences, Neurosciences and Sense Organs, “Aldo Moro” University of Bari, 70124 Bari, Italy)

Abstract

Aim: Diabetes and periodontal disease are both chronic pathological conditions linked by several underlying biological mechanisms, in which the inflammatory response plays a critical role, and their association has been largely recognized. Recently, attention has been given to diabetes as an important mediator of vascular endothelial growth factor (VEGF) overexpression in periodontal tissues, by virtue of its ability to affect microvasculature. This review aims to summarize the findings from studies that explored VEGF expression in diabetic patients with periodontitis, compared to periodontally healthy subjects. Materials and Methods: A systematic literature review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A PubMed search of select medical subject heading (MeSH) terms was carried out to identify all studies reporting findings about VEGF expression in periodontal tissues of diabetic patients up to May 2018. The inclusion criteria were studies on VEGF expression in periodontally diseased tissues of diabetic patients compared with nondiabetic subjects, with any method of analysis, and published in the English language. Results: Eight articles met the inclusion criteria. Immunohistochemistry was used in six of the studies, reverse transcriptase polymerase chain reaction (real-time RT-PCR) aiming to quantify mRNA VEGF expression was used in one study, and ELISA analysis was used for one study. Compared with nondiabetic patients, a higher VEGF expression in gingival tissue and gingival crevicular fluid (GCF) samples in diabetic patients with periodontitis was reported. Conclusions: Overall, novel evidence for the VEGF expression within the periodontal tissue of diabetic patients paves the way for further studies on the role of this protein in neovascularization physiology and pathophysiology in microvasculature of the periodontium.

Suggested Citation

  • Gianna Maria Nardi & Elisabetta Ferrara & Ilaria Converti & Francesca Cesarano & Salvatore Scacco & Roberta Grassi & Antonio Gnoni & Felice Roberto Grassi & Biagio Rapone, 2020. "Does Diabetes Induce the Vascular Endothelial Growth Factor (VEGF) Expression in Periodontal Tissues? A Systematic Review," IJERPH, MDPI, vol. 17(8), pages 1-16, April.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:8:p:2765-:d:346582
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/8/2765/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/8/2765/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Blume-Jensen & Tony Hunter, 2001. "Oncogenic kinase signalling," Nature, Nature, vol. 411(6835), pages 355-365, May.
    2. Donald P. Bottaro & Lance A. Liotta, 2003. "Out of air is not out of action," Nature, Nature, vol. 423(6940), pages 593-595, June.
    3. George D. Yancopoulos & Samuel Davis & Nicholas W. Gale & John S. Rudge & Stanley J. Wiegand & Jocelyn Holash, 2000. "Vascular-specific growth factors and blood vessel formation," Nature, Nature, vol. 407(6801), pages 242-248, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balkrishna Chaube & Kathryn M. Citrin & Mahnaz Sahraei & Abhishek K. Singh & Diego Saenz Urturi & Wen Ding & Richard W. Pierce & Raaisa Raaisa & Rebecca Cardone & Richard Kibbey & Carlos Fernández-Her, 2023. "Suppression of angiopoietin-like 4 reprograms endothelial cell metabolism and inhibits angiogenesis," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    2. Anna Goussia & Nafsika Simou & Flora Zagouri & Kyriaki Manousou & Georgios Lazaridis & Helen Gogas & Angelos Koutras & Maria Sotiropoulou & George Pentheroudakis & Dimitrios Bafaloukos & Christos Mark, 2018. "Associations of angiogenesis-related proteins with specific prognostic factors, breast cancer subtypes and survival outcome in early-stage breast cancer patients. A Hellenic Cooperative Oncology Group," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-19, July.
    3. Qiwei Jiang & Xiaomei Zhang & Xiaoming Dai & Shiyao Han & Xueji Wu & Lei Wang & Wenyi Wei & Ning Zhang & Wei Xie & Jianping Guo, 2022. "S6K1-mediated phosphorylation of PDK1 impairs AKT kinase activity and oncogenic functions," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Sichun Yang & Benoît Roux, 2008. "Src Kinase Conformational Activation: Thermodynamics, Pathways, and Mechanisms," PLOS Computational Biology, Public Library of Science, vol. 4(3), pages 1-14, March.
    5. Domanskyi, Sergii & Hakansson, Alex & Meng, Michelle & Pham, Benjamin K & Graff Zivin, Joshua S & Piermarocchi, Carlo & Paternostro, Giovanni & Ferrara, Napoleone, 2022. "Naturally occurring combinations of receptors from single cell transcriptomics in endothelial cells," University of California at San Diego, Economics Working Paper Series qt7rx412x7, Department of Economics, UC San Diego.
    6. Zhongtao Zhao & Qiaojun Jin & Jin-Rong Xu & Huiquan Liu, 2014. "Identification of a Fungi-Specific Lineage of Protein Kinases Closely Related to Tyrosine Kinases," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-8, February.
    7. Hipólito Nicolás Cuesta-Hernández & Julia Contreras & Pablo Soriano-Maldonado & Jana Sánchez-Wandelmer & Wayland Yeung & Ana Martín-Hurtado & Inés G. Muñoz & Natarajan Kannan & Marta Llimargas & Javie, 2023. "An allosteric switch between the activation loop and a c-terminal palindromic phospho-motif controls c-Src function," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    8. Hui-Rong Xu & Zhong-Fa Xu & Yan-Lai Sun & Jian-Jun Han & Zeng-Jun Li, 2013. "The −842G/C Polymorphisms of PIN1 Contributes to Cancer Risk: A Meta-Analysis of 10 Case-Control Studies," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-7, August.
    9. Martin Klammer & J Nikolaj Dybowski & Daniel Hoffmann & Christoph Schaab, 2015. "Pareto Optimization Identifies Diverse Set of Phosphorylation Signatures Predicting Response to Treatment with Dasatinib," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-16, June.
    10. Jeongah Yoon & Thomas S Deisboeck, 2009. "Investigating Differential Dynamics of the MAPK Signaling Cascade Using a Multi-Parametric Global Sensitivity Analysis," PLOS ONE, Public Library of Science, vol. 4(2), pages 1-14, February.
    11. Kousik Kundu & Fabrizio Costa & Michael Huber & Michael Reth & Rolf Backofen, 2013. "Semi-Supervised Prediction of SH2-Peptide Interactions from Imbalanced High-Throughput Data," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:8:p:2765-:d:346582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.