IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i11p4029-d367840.html
   My bibliography  Save this article

Algicidal Efficiency and Genotoxic Effects of Phanerochaete chrysosporium against Microcystis aeruginosa

Author

Listed:
  • Guoming Zeng

    (Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
    These two authors contributed equally to this work.)

  • Maolan Zhang

    (Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
    These two authors contributed equally to this work.)

  • Pei Gao

    (Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China)

  • Jiale Wang

    (Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China)

  • Da Sun

    (Institute of Life Sciences & Biomedicine Collaborative Innovation Center, Wenzhou University, Wenzhou 325035, China)

Abstract

Eutrophication has become a severe environmental problem. This study evaluated the algicidal efficiency and genotoxic effects of Microcystis aeruginosa co-cultured with Phanerochaete chrysosporium for 48 h under the optimum conditions of 250 mg/L of P. chrysosporium at 25 °C with dissolved oxygen content of 7.0 mg/L. The results showed that the activity of algal dehydrogenase, superoxide dismutase, and peroxidase were all decreased and the malondialdehyde content increased after co-culturing. Fourier transform infrared spectroscopy and scanning electron microscopy observations showed that the functional group and structure of algal cells were significantly changed. Compared with those of control tadpoles, blood cells of Fejervarya multistriata tadpoles had increased micronucleus frequency (from 1.05 ± 0.09 to 1.99 ± 0.05) and abnormal nuclei (from 2.45 ± 0.06 to 5.83 ± 0.07). The tail length of M. aeruginosa co-cultured with P. chrysosporium increased from 1.12 ± 0.21 to 21.68 ± 0.34, and the comet length increased from 6.45 ± 0.09 to 36.45 ± 0.67 within 48 h. Micronucleus assay and Comet assay results demonstrated that P. chrysosporium might effectively remove algae and reduce genotoxic effects and may be safe for aquatic ecosystems.

Suggested Citation

  • Guoming Zeng & Maolan Zhang & Pei Gao & Jiale Wang & Da Sun, 2020. "Algicidal Efficiency and Genotoxic Effects of Phanerochaete chrysosporium against Microcystis aeruginosa," IJERPH, MDPI, vol. 17(11), pages 1-11, June.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:11:p:4029-:d:367840
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/11/4029/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/11/4029/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yun Bai & Zhenzhong Sun & Bo Zeng & Jianyu Long & Lin Li & José Valente Oliveira & Chuan Li, 2019. "A comparison of dimension reduction techniques for support vector machine modeling of multi-parameter manufacturing quality prediction," Journal of Intelligent Manufacturing, Springer, vol. 30(5), pages 2245-2256, June.
    2. Karen Crasta & Neil J. Ganem & Regina Dagher & Alexandra B. Lantermann & Elena V. Ivanova & Yunfeng Pan & Luigi Nezi & Alexei Protopopov & Dipanjan Chowdhury & David Pellman, 2012. "DNA breaks and chromosome pulverization from errors in mitosis," Nature, Nature, vol. 482(7383), pages 53-58, February.
    3. Stephen P. Jackson & Jiri Bartek, 2009. "The DNA-damage response in human biology and disease," Nature, Nature, vol. 461(7267), pages 1071-1078, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zita Gál & Stavroula Boukoura & Kezia Catharina Oxe & Sara Badawi & Blanca Nieto & Lea Milling Korsholm & Sille Blangstrup Geisler & Ekaterina Dulina & Anna Vestergaard Rasmussen & Christina Dahl & We, 2024. "Hyper-recombination in ribosomal DNA is driven by long-range resection-independent RAD51 accumulation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Sangho Lee & Youngdoo Son, 2021. "Motor Load Balancing with Roll Force Prediction for a Cold-Rolling Setup with Neural Networks," Mathematics, MDPI, vol. 9(12), pages 1-21, June.
    3. Ilaria Rosso & Corey Jones-Weinert & Francesca Rossiello & Matteo Cabrini & Silvia Brambillasca & Leonel Munoz-Sagredo & Zeno Lavagnino & Emanuele Martini & Enzo Tedone & Massimiliano Garre’ & Julio A, 2023. "Alternative lengthening of telomeres (ALT) cells viability is dependent on C-rich telomeric RNAs," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Samah W. Awwad & Colm Doyle & Josie Coulthard & Aldo S. Bader & Nadia Gueorguieva & Simon Lam & Vipul Gupta & Rimma Belotserkovskaya & Tuan-Anh Tran & Shankar Balasubramanian & Stephen P. Jackson, 2025. "KLF5 loss sensitizes cells to ATR inhibition and is synthetic lethal with ARID1A deficiency," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    5. Daipayan Banerjee & Kurt Langberg & Salar Abbas & Eric Odermatt & Praveen Yerramothu & Martin Volaric & Matthew A. Reidenbach & Kathy J. Krentz & C. Dustin Rubinstein & David L. Brautigan & Tarek Abba, 2021. "A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    6. Cerys E. Currie & Emma Ford & Lucy Benham Whyte & Deborah M. Taylor & Bettina P. Mihalas & Muriel Erent & Adele L. Marston & Geraldine M. Hartshorne & Andrew D. McAinsh, 2022. "The first mitotic division of human embryos is highly error prone," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Jérémy Sandoz & Max Cigrang & Amélie Zachayus & Philippe Catez & Lise-Marie Donnio & Clèmence Elly & Jadwiga Nieminuszczy & Pietro Berico & Cathy Braun & Sergey Alekseev & Jean-Marc Egly & Wojciech Ni, 2023. "Active mRNA degradation by EXD2 nuclease elicits recovery of transcription after genotoxic stress," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Abhilash Puthanveettil Madathil & Xichun Luo & Qi Liu & Charles Walker & Rajeshkumar Madarkar & Yukui Cai & Zhanqiang Liu & Wenlong Chang & Yi Qin, 2024. "Intrinsic and post-hoc XAI approaches for fingerprint identification and response prediction in smart manufacturing processes," Journal of Intelligent Manufacturing, Springer, vol. 35(8), pages 4159-4180, December.
    9. Ross J. Hill & Nazareno Bona & Job Smink & Hannah K. Webb & Alastair Crisp & Juan I. Garaycoechea & Gerry P. Crossan, 2024. "p53 regulates diverse tissue-specific outcomes to endogenous DNA damage in mice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Johanna Zerbib & Marica Rosaria Ippolito & Yonatan Eliezer & Giuseppina Feudis & Eli Reuveni & Anouk Savir Kadmon & Sara Martin & Sonia Viganò & Gil Leor & James Berstler & Julia Muenzner & Michael Mü, 2024. "Human aneuploid cells depend on the RAF/MEK/ERK pathway for overcoming increased DNA damage," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    11. Kate M. MacDonald & Shirony Nicholson-Puthenveedu & Maha M. Tageldein & Sarika Khasnis & Cheryl H. Arrowsmith & Shane M. Harding, 2023. "Antecedent chromatin organization determines cGAS recruitment to ruptured micronuclei," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Matteo Bugatti & Bianca Maria Colosimo, 2022. "Towards real-time in-situ monitoring of hot-spot defects in L-PBF: a new classification-based method for fast video-imaging data analysis," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 293-309, January.
    13. Anshuman Kumar Sahu & Siba Sankar Mahapatra, 2021. "Prediction and optimization of performance measures in electrical discharge machining using rapid prototyping tool electrodes," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2125-2145, December.
    14. Qin Qin & Jing Lu & Hongcheng Zhu & Liping Xu & Hongyan Cheng & Liangliang Zhan & Xi Yang & Chi Zhang & Xinchen Sun, 2014. "PARP-1 Val762Ala Polymorphism and Risk of Cancer: A Meta-Analysis Based on 39 Case-Control Studies," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-12, May.
    15. Roham Sadeghi Tabar & Kristina Wärmefjord & Rikard Söderberg & Lars Lindkvist, 2021. "Critical joint identification for efficient sequencing," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 769-780, March.
    16. Wen-Qi Ma & Xi-Qiong Han & Xin Wang & Ying Wang & Yi Zhu & Nai-Feng Liu, 2016. "Associations between XRCC1 Gene Polymorphisms and Coronary Artery Disease: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
    17. Andreas Luttens & Duc Duy Vo & Emma R. Scaletti & Elisée Wiita & Ingrid Almlöf & Olov Wallner & Jonathan Davies & Sara Košenina & Liuzhen Meng & Maeve Long & Oliver Mortusewicz & Geoffrey Masuyer & Fl, 2025. "Virtual fragment screening for DNA repair inhibitors in vast chemical space," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    18. Zhang, L.W. & Cheng, Y.M. & Liew, K.M., 2014. "Mathematical modeling of p53 pulses in G2 phase with DNA damage," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 1000-1010.
    19. Ellen B. Garcia & Cynthia Alms & Albert W. Hinman & Conor Kelly & Adam Smith & Marina Vance & Jadranka Loncarek & Linsey C. Marr & Daniela Cimini, 2019. "Single-Cell Analysis Reveals that Chronic Silver Nanoparticle Exposure Induces Cell Division Defects in Human Epithelial Cells," IJERPH, MDPI, vol. 16(11), pages 1-22, June.
    20. Pieranna Chiarella & Pasquale Capone & Renata Sisto, 2023. "Contribution of Genetic Polymorphisms in Human Health," IJERPH, MDPI, vol. 20(2), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:11:p:4029-:d:367840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.