IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v12y2015i8p9181-9198d53828.html
   My bibliography  Save this article

Analysis on Two Typical Landslide Hazard Phenomena in The Wenchuan Earthquake by Field Investigations and Shaking Table Tests

Author

Listed:
  • Changwei Yang

    (School of Civil Engineering, Key of Transportation Tnuuel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
    Guangxi Key Laboratory of Disaster Prevention and Structural Safety, Guangxi University, Nanning 530004, China)

  • Jianjing Zhang

    (School of Civil Engineering, Key of Transportation Tnuuel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China)

  • Feicheng Liu

    (School of Civil Engineering, Key of Transportation Tnuuel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China)

  • Junwei Bi

    (School of Civil Engineering, Key of Transportation Tnuuel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China)

  • Zhang Jun

    (Shanxi Transportation Research Institute, Taiyuan 030006, China)

Abstract

Based on our field investigations of landslide hazards in the Wenchuan earthquake, some findings can be reported: (1) the multi-aspect terrain facing empty isolated mountains and thin ridges reacted intensely to the earthquake and was seriously damaged; (2) the slope angles of most landslides was larger than 45°. Considering the above disaster phenomena, the reasons are analyzed based on shaking table tests of one-sided, two-sided and four-sided slopes. The analysis results show that: (1) the amplifications of the peak accelerations of four-sided slopes is stronger than that of the two-sided slopes, while that of the one-sided slope is the weakest, which can indirectly explain the phenomena that the damage is most serious; (2) the amplifications of the peak accelerations gradually increase as the slope angles increase, and there are two inflection points which are the point where the slope angle is 45° and where the slope angle is 50°, respectively, which can explain the seismic phenomenon whereby landslide hazards mainly occur on the slopes whose slope angle is bigger than 45°. The amplification along the slope strike direction is basically consistent, and the step is smooth.

Suggested Citation

  • Changwei Yang & Jianjing Zhang & Feicheng Liu & Junwei Bi & Zhang Jun, 2015. "Analysis on Two Typical Landslide Hazard Phenomena in The Wenchuan Earthquake by Field Investigations and Shaking Table Tests," IJERPH, MDPI, vol. 12(8), pages 1-18, August.
  • Handle: RePEc:gam:jijerp:v:12:y:2015:i:8:p:9181-9198:d:53828
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/12/8/9181/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/12/8/9181/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhiyi Chen & Cheng Shi & Tianbin Li & Yong Yuan, 2012. "Damage characteristics and influence factors of mountain tunnels under strong earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 387-401, March.
    2. Yu Huang & Ximiao Jiang, 2010. "Field-observed phenomena of seismic liquefaction and subsidence during the 2008 Wenchuan earthquake in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(3), pages 839-850, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao-Hua Bao & Guan-Lin Ye & Bin Ye, 2014. "Explanation of liquefaction in after shock of the 2011 great east Japan earthquake using numerical analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1881-1897, December.
    2. Domenico Lombardi & Subhamoy Bhattacharya, 2014. "Liquefaction of soil in the Emilia-Romagna region after the 2012 Northern Italy earthquake sequence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1749-1770, September.
    3. Yu Huang & Zhuoqiang Wen, 2015. "Recent developments of soil improvement methods for seismic liquefaction mitigation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1927-1938, April.
    4. Xiaohua Bao & Bin Ye & Guanlin Ye & Feng Zhang, 2016. "Co-seismic and post-seismic behavior of a wall type breakwater on a natural ground composed of liquefiable layer," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1799-1819, September.
    5. Yu Huang & Liuyuan Zhao, 2018. "The effects of small particles on soil seismic liquefaction resistance: current findings and future challenges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 567-579, May.
    6. Huafeng Xu & Bin Liu & Zhigeng Fang, 2014. "New grey prediction model and its application in forecasting land subsidence in coal mine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1181-1194, March.
    7. Edris Alam & Dale Dominey-Howes, 2014. "An analysis of the AD1762 earthquake and tsunami in SE Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 903-933, January.
    8. Xuesong Zhang & Biao He & Mohanad Muayad Sabri Sabri & Mohammed Al-Bahrani & Dmitrii Vladimirovich Ulrikh, 2022. "Soil Liquefaction Prediction Based on Bayesian Optimization and Support Vector Machines," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    9. Ye-Shuang Xu & Run-Qiu Huang & Jie Han & Shui-Long Shen, 2013. "Evaluation of allowable withdrawn volume of groundwater based on observed data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 513-522, June.
    10. Yu Huang & Weijie Zhang & Zili Dai & Qiang Xu, 2013. "Numerical simulation of flow processes in liquefied soils using a soil–water-coupled smoothed particle hydrodynamics method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 809-827, October.
    11. Yu Huang & Miao Yu, 2013. "Review of soil liquefaction characteristics during major earthquakes of the twenty-first century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 2375-2384, February.
    12. Yu Huang & Hu Zheng & Zhijing Zhuang, 2012. "Seismic liquefaction analysis of a reservoir dam foundation in the South–North Water Diversion project in China. Part I: Liquefaction potential assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 1299-1311, February.
    13. Yu-liang Lin & Guo-lin Yang, 2013. "Dynamic behavior of railway embankment slope subjected to seismic excitation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 219-235, October.
    14. Yung-Yen Ko & Chi-Chin Tsai & Jin-Hung Hwang & Yu-Wei Hwang & Louis Ge & Min-Chien Chu, 2023. "Failure of engineering structures and associated geotechnical problems during the 2022 ML 6.8 Chihshang earthquake, Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 55-94, August.
    15. Fjóla Sigtryggsdóttir & Jónas Snæbjörnsson & Lars Grande & Ragnar Sigbjörnsson, 2015. "Methodology for geohazard assessment for hydropower projects," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1299-1331, November.
    16. Yu Huang & Weijie Zhang & Wuwei Mao & Chen Jin, 2011. "Flow analysis of liquefied soils based on smoothed particle hydrodynamics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1547-1560, December.
    17. Zhiyi Chen & Jianshu Wei, 2013. "Correlation between ground motion parameters and lining damage indices for mountain tunnels," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1683-1702, February.
    18. Ye-Shuang Xu & Shui-Long Shen & Yan-Jun Du & Jin-Chun Chai & Suksun Horpibulsuk, 2013. "Modelling the cutoff behavior of underground structure in multi-aquifer-aquitard groundwater system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 731-748, March.
    19. Yu-liang Lin & Wu-ming Leng & Guo-lin Yang & Liang Li & Jun-Sheng Yang, 2015. "Seismic response of embankment slopes with different reinforcing measures in shaking table tests," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 791-810, March.
    20. Jiankang Liu & Osamu Sakaguchi & Sodai Ishizu & Hengjie Luan & Wei Han & Yujing Jiang, 2020. "Application of Specific Energy in Evaluation of Geological Conditions Ahead of Tunnel Face," Energies, MDPI, vol. 13(4), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:12:y:2015:i:8:p:9181-9198:d:53828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.