IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v17y2025i8p365-d1722354.html
   My bibliography  Save this article

The Adaptive Ecosystem of MaaS-Driven Cookie Theft: Dynamics, Anticipatory Analysis Concepts, and Proactive Defenses

Author

Listed:
  • Leandro Antonio Pazmiño Ortiz

    (Escuela de Formación de Tecnólogos, Escuela Politécnica Nacional, Quito 170525, Ecuador)

  • Ivonne Fernanda Maldonado Soliz

    (Escuela de Formación de Tecnólogos, Escuela Politécnica Nacional, Quito 170525, Ecuador)

  • Vanessa Katherine Guevara Balarezo

    (Escuela de Formación de Tecnólogos, Escuela Politécnica Nacional, Quito 170525, Ecuador)

Abstract

The industrialization of cybercrime, principally through Malware-as-a-Service (MaaS), has elevated HTTP cookie theft to a critical cybersecurity challenge, enabling attackers to bypass multi-factor authentication and perpetrate large-scale account takeovers. Employing a Holistic and Integrative Review methodology, this paper dissects the intricate, adaptive ecosystem of MaaS-driven cookie theft. We systematically characterize the co-evolving arms race between offensive and defensive strategies (2020–2025), revealing a critical strategic asymmetry where attackers optimize for speed and low cost, while effective defenses demand significant resources. To shift security from a reactive to an anticipatory posture, a multi-dimensional predictive framework is not only proposed but is also detailed as a formalized, testable algorithm, integrating technical, economic, and behavioral indicators to forecast emerging threat trajectories. Our findings conclude that long-term security hinges on disrupting the underlying cybercriminal economic model; we therefore reframe proactive countermeasures like Zero-Trust principles and ephemeral tokens as economic weapons designed to devalue the stolen asset. Finally, the paper provides a prioritized, multi-year research roadmap and a practical decision-tree framework to guide the implementation of these advanced, collaborative cybersecurity strategies to counter this pervasive and evolving threat.

Suggested Citation

  • Leandro Antonio Pazmiño Ortiz & Ivonne Fernanda Maldonado Soliz & Vanessa Katherine Guevara Balarezo, 2025. "The Adaptive Ecosystem of MaaS-Driven Cookie Theft: Dynamics, Anticipatory Analysis Concepts, and Proactive Defenses," Future Internet, MDPI, vol. 17(8), pages 1-41, August.
  • Handle: RePEc:gam:jftint:v:17:y:2025:i:8:p:365-:d:1722354
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/17/8/365/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/17/8/365/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kamran Shaukat & Suhuai Luo & Vijay Varadharajan & Ibrahim A. Hameed & Shan Chen & Dongxi Liu & Jiaming Li, 2020. "Performance Comparison and Current Challenges of Using Machine Learning Techniques in Cybersecurity," Energies, MDPI, vol. 13(10), pages 1-27, May.
    2. Henock Mulugeta Melaku, 2023. "Context-Based and Adaptive Cybersecurity Risk Management Framework," Risks, MDPI, vol. 11(6), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatima Rafiq & Mazhar Javed Awan & Awais Yasin & Haitham Nobanee & Azlan Mohd Zain & Saeed Ali Bahaj, 2022. "Privacy Prevention of Big Data Applications: A Systematic Literature Review," SAGE Open, , vol. 12(2), pages 21582440221, May.
    2. Chetna Monga & Deepali Gupta & Devendra Prasad & Sapna Juneja & Ghulam Muhammad & Zulfiqar Ali, 2022. "Sustainable Network by Enhancing Attribute-Based Selection Mechanism Using Lagrange Interpolation," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    3. Hail Jung & Jinsu Jeon & Dahui Choi & Jung-Ywn Park, 2021. "Application of Machine Learning Techniques in Injection Molding Quality Prediction: Implications on Sustainable Manufacturing Industry," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    4. Frank Cremer & Barry Sheehan & Michael Fortmann & Arash N. Kia & Martin Mullins & Finbarr Murphy & Stefan Materne, 2022. "Cyber risk and cybersecurity: a systematic review of data availability," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 47(3), pages 698-736, July.
    5. Wojciech Szczepanik & Marcin Niemiec, 2022. "Heuristic Intrusion Detection Based on Traffic Flow Statistical Analysis," Energies, MDPI, vol. 15(11), pages 1-19, May.
    6. Feng Wu & Wanqiang Xu & Chaoran Lin & Yanwei Zhang, 2022. "Knowledge Trajectories on Public Crisis Management Research from Massive Literature Text Using Topic-Clustered Evolution Extraction," Mathematics, MDPI, vol. 10(12), pages 1-18, June.
    7. Ahmed Abdu & Zhengjun Zhai & Redhwan Algabri & Hakim A. Abdo & Kotiba Hamad & Mugahed A. Al-antari, 2022. "Deep Learning-Based Software Defect Prediction via Semantic Key Features of Source Code—Systematic Survey," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    8. Pengyi Liao & Jun Yan & Jean Michel Sellier & Yongxuan Zhang, 2022. "TADA: A Transferable Domain-Adversarial Training for Smart Grid Intrusion Detection Based on Ensemble Divergence Metrics and Spatiotemporal Features," Energies, MDPI, vol. 15(23), pages 1-18, November.
    9. Nasir, Nida & Kansal, Afreen & Alshaltone, Omar & Barneih, Feras & Shanableh, Abdallah & Al-Shabi, Mohammad & Al Shammaa, Ahmed, 2023. "Deep learning detection of types of water-bodies using optical variables and ensembling," LSE Research Online Documents on Economics 118724, London School of Economics and Political Science, LSE Library.
    10. Antczak Joanna, 2024. "Determinants of business management in the digital age," International Journal of Contemporary Management, Sciendo, vol. 60(1), pages 17-26, March.
    11. Yuan Wang & Liping Yang & Jun Wu & Zisheng Song & Li Shi, 2022. "Mining Campus Big Data: Prediction of Career Choice Using Interpretable Machine Learning Method," Mathematics, MDPI, vol. 10(8), pages 1-18, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:17:y:2025:i:8:p:365-:d:1722354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.