Author
Listed:
- Ahmad Salehiyan
(School of Industrial Engineering and Management, Oklahoma State University, Stillwater, OK 74078, USA)
- Pardis Sadatian Moghaddam
(Department of Computer Science, Georgia State University, Atlanta, GA 30302, USA)
- Masoud Kaveh
(Department of Information and Communication Engineering, Aalto University, 02150 Espoo, Finland)
Abstract
The rapid expansion of Edge and Industrial Internet of Things (IIoT) systems has intensified the risk and complexity of cyberattacks. Detecting advanced intrusions in these heterogeneous and high-dimensional environments remains challenging. As the IIoT becomes integral to critical infrastructure, ensuring security is crucial to prevent disruptions and data breaches. Traditional IDS approaches often fall short against evolving threats, highlighting the need for intelligent and adaptive solutions. While deep learning (DL) offers strong capabilities for pattern recognition, single-model architectures often lack robustness. Thus, hybrid and optimized DL models are increasingly necessary to improve detection performance and address data imbalance and noise. In this study, we propose an optimized hybrid DL framework that combines a transformer, generative adversarial network (GAN), and autoencoder (AE) components, referred to as Transformer–GAN–AE, for robust intrusion detection in Edge and IIoT environments. To enhance the training and convergence of the GAN component, we integrate an improved chimp optimization algorithm (IChOA) for hyperparameter tuning and feature refinement. The proposed method is evaluated using three recent and comprehensive benchmark datasets, WUSTL-IIoT-2021, EdgeIIoTset, and TON_IoT, widely recognized as standard testbeds for IIoT intrusion detection research. Extensive experiments are conducted to assess the model’s performance compared to several state-of-the-art techniques, including standard GAN, convolutional neural network (CNN), deep belief network (DBN), time-series transformer (TST), bidirectional encoder representations from transformers (BERT), and extreme gradient boosting (XGBoost). Evaluation metrics include accuracy, recall, AUC, and run time. Results demonstrate that the proposed Transformer–GAN–AE framework outperforms all baseline methods, achieving a best accuracy of 98.92%, along with superior recall and AUC values. The integration of IChOA enhances GAN stability and accelerates training by optimizing hyperparameters. Together with the transformer for temporal feature extraction and the AE for denoising, the hybrid architecture effectively addresses complex, imbalanced intrusion data. The proposed optimized Transformer–GAN–AE model demonstrates high accuracy and robustness, offering a scalable solution for real-world Edge and IIoT intrusion detection.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:17:y:2025:i:7:p:279-:d:1686407. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.