IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v17y2025i6p263-d1680747.html
   My bibliography  Save this article

A Grover Search-Based Quantum Key Agreement Protocol for Secure Internet of Medical Things Communication

Author

Listed:
  • Tzung-Her Chen

    (Department of Computer Science and Information Engineering, National Chiayi University, Chiayi 60004, Taiwan)

Abstract

The rapid integration of the Internet of Medical Things (IoMT) into healthcare systems raises urgent demands for secure communication mechanisms capable of protecting sensitive patient data. Quantum key agreement (QKA), a collaborative approach to key generation based on quantum principles, provides an attractive alternative to traditional quantum key distribution (QKD), as it eliminates dependence on a trusted authority and ensures equal participation from all users. QKA demonstrates particular suitability for IoMT’s decentralized medical networks by eliminating trusted authority dependence while ensuring equitable participation among all participants. This addresses fundamental challenges where centralized trust models introduce vulnerabilities and asymmetric access patterns that compromise egalitarian principles essential for medical data sharing. However, practical QKA applications in IoMT remain limited, particularly for schemes that avoid complex entanglement operations and authenticated classical channels. Among the few QKA protocols employing Grover’s search algorithm (GSA), existing proposals potentially suffer from limitations in fairness and security. In this paper, the author proposes an improved GSA-based QKA protocol that ensures fairness, security, and correctness without requiring an authenticated classical communication channel. The proposed scheme guarantees that each participant’s input equally contributes to the final key, preventing manipulation by any user subgroup. The scheme combines Grover’s algorithm with the decoy photon technique to ensure secure quantum transmission. Security analysis confirms resistance to external attacks, including intercept-resend, entanglement probes, and device-level exploits, as well as insider threats such as parameter manipulation. Fairness is achieved through a symmetric protocol design rooted in quantum mechanical principles. Efficiency evaluation shows a theoretical efficiency of approximately 25%, while eliminating the need for quantum memory. These results position the proposed protocol as a practical and scalable solution for future secure quantum communication systems, particularly within distributed IoMT environments.

Suggested Citation

  • Tzung-Her Chen, 2025. "A Grover Search-Based Quantum Key Agreement Protocol for Secure Internet of Medical Things Communication," Future Internet, MDPI, vol. 17(6), pages 1-14, June.
  • Handle: RePEc:gam:jftint:v:17:y:2025:i:6:p:263-:d:1680747
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/17/6/263/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/17/6/263/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:17:y:2025:i:6:p:263-:d:1680747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.