IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v16y2024i11p430-d1525277.html
   My bibliography  Save this article

Resilience in the Internet of Medical Things: A Review and Case Study

Author

Listed:
  • Vikas Tomer

    (School of Electrical and Electronic Engineering, Technological University Dublin, Dublin D07 EWV4, Ireland)

  • Sachin Sharma

    (School of Electrical and Electronic Engineering, Technological University Dublin, Dublin D07 EWV4, Ireland)

  • Mark Davis

    (School of Electrical and Electronic Engineering, Technological University Dublin, Dublin D07 EWV4, Ireland)

Abstract

The Internet of Medical Things (IoMT), an extension of the Internet of Things (IoT), is still in its early stages of development. Challenges that are inherent to IoT, persist in IoMT as well. The major focus is on data transmission within the healthcare domain due to its profound impact on health and public well-being. Issues such as latency, bandwidth constraints, and concerns regarding security and privacy are critical in IoMT owing to the sensitive nature of patient data, including patient identity and health status. Numerous forms of cyber-attacks pose threats to IoMT networks, making the reliable and secure transmission of critical medical data a challenging task. Several other situations, such as natural disasters, war, construction works, etc., can cause IoMT networks to become unavailable and fail to transmit the data. The first step in these situations is to recover from failure as quickly as possible, resume the data transfer, and detect the cause of faults, failures, and errors. Several solutions exist in the literature to make the IoMT resilient to failure. However, no single approach proposed in the literature can simultaneously protect the IoMT networks from various attacks, failures, and faults. This paper begins with a detailed description of IoMT and its applications. It considers the underlying requirements of resilience for IoMT networks, such as monitoring, control, diagnosis, and recovery. This paper comprehensively analyzes existing research efforts to provide IoMT network resilience against diverse causes. After investigating several research proposals, we identify that the combination of software-defined networks (SDNs), machine learning (ML), and microservices architecture (MSA) has the capabilities to fulfill the requirements for achieving resilience in the IoMT networks. It mainly focuses on the analysis of technologies, such as SDN, ML, and MSA, separately, for meeting the resilience requirements in the IoMT networks. SDN can be used for monitoring and control, and ML can be used for anomaly detection and diagnosis, whereas MSA can be used for bringing distributed functionality and recovery into the IoMT networks. This paper provides a case study that describes the remote patient monitoring (RPM) of a heart patient in IoMT networks. It covers the different failure scenarios in IoMT infrastructure. Finally, we provide a proposed methodology that elaborates how distributed functionality can be achieved during these failures using machine learning, software-defined networks, and microservices technologies.

Suggested Citation

  • Vikas Tomer & Sachin Sharma & Mark Davis, 2024. "Resilience in the Internet of Medical Things: A Review and Case Study," Future Internet, MDPI, vol. 16(11), pages 1-22, November.
  • Handle: RePEc:gam:jftint:v:16:y:2024:i:11:p:430-:d:1525277
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/16/11/430/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/16/11/430/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:16:y:2024:i:11:p:430-:d:1525277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.