IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v4y2021i1p3-50d712898.html
   My bibliography  Save this article

Analyzing and Forecasting Tourism Demand in Vietnam with Artificial Neural Networks

Author

Listed:
  • Le Quyen Nguyen

    (UNIAG-Applied Management Research Unit, Instituto Politécnico de Bragança, 5300-253 Braganza, Portugal)

  • Paula Odete Fernandes

    (UNIAG-Applied Management Research Unit, Instituto Politécnico de Bragança, 5300-253 Braganza, Portugal)

  • João Paulo Teixeira

    (UNIAG-Applied Management Research Unit, Instituto Politécnico de Bragança, 5300-253 Braganza, Portugal
    CEDRI-Research Center in Digitalization and Intelligent Robotics, Instituto Politécnico de Bragança, 5300-253 Braganza, Portugal)

Abstract

Vietnam has experienced a tourism expansion over the last decade, proving itself as one of the top tourist destinations in Southeast Asia. The country received more than 18 million international tourists in 2019, compared to only 1.5 million twenty-five years ago. Tourist spending has translated into rising employment and incomes for Vietnam’s tourism sector, making it the key driver to the socio-economic development of the country. Following the COVID-19 pandemic, only 3.8 million international tourists visited Vietnam in 2020, plummeting by 78.7% year-on-year. The latest outbreak in early summer 2021 made the sector continue to hit bottom. Although Vietnam’s tourism has suffered extreme losses, once the contagion is under control worldwide, the number of international tourists to Vietnam is expected to rise again to reach pre-pandemic levels in the next few years. First, the paper aims to provide a summary of Vietnam’s tourism characteristics with a special focus on international tourists. Next, the predictive capability of artificial neural network (ANN) methodology is examined with the datasets of international tourists to Vietnam from 2008 to 2020. Some ANN architectures are experimented with to predict the monthly number of international tourists to the country, including some lockdown periods due to the COVID-19 pandemic. The results show that, with the correct selection of ANN architectures and data from the previous 12 months, the best ANN models can be forecast for next month with a MAPE between 7.9% and 9.2%. As the method proves its forecasting accuracy, it would serve as a valuable tool for Vietnam’s policymakers and firm managers to make better investment and strategic decisions.

Suggested Citation

  • Le Quyen Nguyen & Paula Odete Fernandes & João Paulo Teixeira, 2021. "Analyzing and Forecasting Tourism Demand in Vietnam with Artificial Neural Networks," Forecasting, MDPI, vol. 4(1), pages 1-15, December.
  • Handle: RePEc:gam:jforec:v:4:y:2021:i:1:p:3-50:d:712898
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/4/1/3/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/4/1/3/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kourentzes, Nikolaos & Athanasopoulos, George, 2019. "Cross-temporal coherent forecasts for Australian tourism," Annals of Tourism Research, Elsevier, vol. 75(C), pages 393-409.
    2. Hassani, Hossein & Silva, Emmanuel Sirimal & Antonakakis, Nikolaos & Filis, George & Gupta, Rangan, 2017. "Forecasting accuracy evaluation of tourist arrivals," Annals of Tourism Research, Elsevier, vol. 63(C), pages 112-127.
    3. Song, Haiyan & Qiu, Richard T.R. & Park, Jinah, 2019. "A review of research on tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 75(C), pages 338-362.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El houssin Ouassou & Hafsa Taya, 2022. "Forecasting Regional Tourism Demand in Morocco from Traditional and AI-Based Methods to Ensemble Modeling," Forecasting, MDPI, vol. 4(2), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yishuo & Li, Gang & Muskat, Birgit & Law, Rob & Yang, Yating, 2020. "Group pooling for deep tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 82(C).
    2. Xi Wu & Adam Blake, 2023. "The Impact of the COVID-19 Crisis on Air Travel Demand: Some Evidence From China," SAGE Open, , vol. 13(1), pages 21582440231, January.
    3. Davide Provenzano & Serena Volo, 2022. "Tourism recovery amid COVID-19: The case of Lombardy, Italy," Tourism Economics, , vol. 28(1), pages 110-130, February.
    4. Zhang, Yishuo & Li, Gang & Muskat, Birgit & Vu, Huy Quan & Law, Rob, 2021. "Predictivity of tourism demand data," Annals of Tourism Research, Elsevier, vol. 89(C).
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Gunter, Ulrich & Zekan, Bozana, 2021. "Forecasting air passenger numbers with a GVAR model," Annals of Tourism Research, Elsevier, vol. 89(C).
    7. Jian-Wu Bi & Tian-Yu Han & Hui Li, 2022. "International tourism demand forecasting with machine learning models: The power of the number of lagged inputs," Tourism Economics, , vol. 28(3), pages 621-645, May.
    8. Xie, Gang & Qian, Yatong & Wang, Shouyang, 2020. "A decomposition-ensemble approach for tourism forecasting," Annals of Tourism Research, Elsevier, vol. 81(C).
    9. Guan, Bo & Silva, Emmanuel Sirimal & Hassani, Hossein & Heravi, Saeed, 2022. "Forecasting tourism growth with State-Dependent Models," Annals of Tourism Research, Elsevier, vol. 94(C).
    10. Kourentzes, Nikolaos & Athanasopoulos, George, 2021. "Elucidate structure in intermittent demand series," European Journal of Operational Research, Elsevier, vol. 288(1), pages 141-152.
    11. Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
    12. Doris Chenguang Wu & Shiteng Zhong & Richard T R Qiu & Ji Wu, 2022. "Are customer reviews just reviews? Hotel forecasting using sentiment analysis," Tourism Economics, , vol. 28(3), pages 795-816, May.
    13. Nicholas Apergis & Konstantinos Gavriilidis & Rangan Gupta, 2023. "Does climate policy uncertainty affect tourism demand? Evidence from time-varying causality tests," Tourism Economics, , vol. 29(6), pages 1484-1498, September.
    14. Xueying Huang & Yuanjun Han & Xuhong Gong & Xiangyan Liu, 2020. "Does the belt and road initiative stimulate China’s inbound tourist market? An empirical study using the gravity model with a DID method," Tourism Economics, , vol. 26(2), pages 299-323, March.
    15. Anastasiou, Dimitris & Drakos, Konstantinos & Kapopoulos, Panayotis, 2022. "Predicting international tourist arrivals in Greece with a novel sector-specific business leading indicator," MPRA Paper 113860, University Library of Munich, Germany.
    16. Guizzardi, Andrea & Pons, Flavio Maria Emanuele & Angelini, Giovanni & Ranieri, Ercolino, 2021. "Big data from dynamic pricing: A smart approach to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1049-1060.
    17. Kaijian He & Don Wu & Yingchao Zou, 2022. "Tourist Arrival Forecasting Using Multiscale Mode Learning Model," Mathematics, MDPI, vol. 10(16), pages 1-12, August.
    18. Pritularga, Kandrika F. & Svetunkov, Ivan & Kourentzes, Nikolaos, 2021. "Stochastic coherency in forecast reconciliation," International Journal of Production Economics, Elsevier, vol. 240(C).
    19. Han Liu & Yongjing Wang & Haiyan Song & Ying Liu, 2023. "Measuring tourism demand nowcasting performance using a monotonicity test," Tourism Economics, , vol. 29(5), pages 1302-1327, August.
    20. Kourentzes, Nikolaos & Saayman, Andrea & Jean-Pierre, Philippe & Provenzano, Davide & Sahli, Mondher & Seetaram, Neelu & Volo, Serena, 2021. "Visitor arrivals forecasts amid COVID-19: A perspective from the Africa team," Annals of Tourism Research, Elsevier, vol. 88(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:4:y:2021:i:1:p:3-50:d:712898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.