IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i8p641-d75931.html
   My bibliography  Save this article

Effect of Photoanode Design on the Photoelectrochemical Performance of Dye-Sensitized Solar Cells Based on SnO 2 Nanocomposite

Author

Listed:
  • I-Ming Hung

    (Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan)

  • Ripon Bhattacharjee

    (Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan)

Abstract

Li-doped ZnO (LZO) aggregated nanoparticles are used as an insulating layer in SnO 2 nanocomposite (SNC) photoanodes to suppress the recombination process in dye-sensitized solar cells (DSSCs). Various weight percentages of SnO 2 nanoparticles (SNPs) and SnO 2 nanoflowers (SNFs) were used to prepare SNC photoanodes. The photocurrent - voltage characteristics showed that the incorporation of an LZO insulating layer in an SNC photoanode increased the conversion efficiency of DSSCs. This was due to an increase in the surface area, charge injection, and charge collection, and the minimization of the recombination rate of photoanodes. Electrochemical impedance spectroscopy (EIS) results showed lower series resistance, charge injection resistance, and shorter lifetimes for DSSCs based on an SNC photoanode with an LZO insulating layer. The open circuit voltage and fill factor of the DSSCs based on SNC photoanodes with an LZO insulating layer significantly increased. The DSSC based on a SNC photoanode with a SNC:SNF weight ratio of 1:1 had a high current density of 4.73 mA/cm 2 , open circuit voltage of 630 mV, fill factor of 69%, and efficiency of 2.06%.

Suggested Citation

  • I-Ming Hung & Ripon Bhattacharjee, 2016. "Effect of Photoanode Design on the Photoelectrochemical Performance of Dye-Sensitized Solar Cells Based on SnO 2 Nanocomposite," Energies, MDPI, vol. 9(8), pages 1-11, August.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:641-:d:75931
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/8/641/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/8/641/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Federico Bella & Simone Galliano & Claudio Gerbaldi & Guido Viscardi, 2016. "Cobalt-Based Electrolytes for Dye-Sensitized Solar Cells: Recent Advances towards Stable Devices," Energies, MDPI, vol. 9(5), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ming Chen & Xuandong Liu & Chengjun Liang & Yi Zhao & Hao Tang, 2019. "Study on Surface Charge Accumulation Characteristics of Resin Impregnated Paper Wall Bushing Core Under Positive DC Voltage," Energies, MDPI, vol. 12(23), pages 1-14, November.
    2. Zainal Arifin & Suyitno Suyitno & Syamsul Hadi & Bayu Sutanto, 2018. "Improved Performance of Dye-Sensitized Solar Cells with TiO 2 Nanoparticles/Zn-Doped TiO 2 Hollow Fiber Photoanodes," Energies, MDPI, vol. 11(11), pages 1-11, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saradh Prasad & Devaraj Durairaj & Mohamad Saleh AlSalhi & Jayaraman Theerthagiri & Prabhakarn Arunachalam & Govindarajan Durai, 2018. "Fabrication of Cost-Effective Dye-Sensitized Solar Cells Using Sheet-Like CoS 2 Films and Phthaloylchitosan-Based Gel-Polymer Electrolyte," Energies, MDPI, vol. 11(2), pages 1-12, January.
    2. Iacopo Benesperi & Reena Singh & Marina Freitag, 2020. "Copper Coordination Complexes for Energy-Relevant Applications," Energies, MDPI, vol. 13(9), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:641-:d:75931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.