IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i9p9117-9136d54820.html
   My bibliography  Save this article

Detuning Minimization of Induction Motor Drive System for Alternative Energy Vehicles

Author

Listed:
  • Habibur Rehman

    (Department of Electrical Engineering, College of Engineering, American University of Sharjah, Sharjah 2666, UAE)

Abstract

This paper evaluates different types of AC machines and various control techniques for their suitability for the drive system of Alternative Energy Vehicles (AEV). An Indirect Field Oriented (IFO) drive system for the AEV application is chosen and its major problem of detuning is addressed by designing an offline and an online rotor resistance adaptation technique. The offline scheme sets the slip gain at various operating conditions based on the fact that if the rotor resistance is set correctly and field orientation is achieved, then there should be a linear relationship between the torque current and the output torque. The online technique is designed using Model Reference Adaptive System (MRAS) for the rotor resistance adaptation. For an ideal field oriented machine, the rotor flux along the q-axis should be zero. This condition acts as a reference model for the proposed MRAS scheme. The current model flux observer in the synchronous frame of reference is selected as an adjustable model and its rotor resistance is tuned so that the flux along the q-axis becomes zero. The effectiveness of the offline tuning scheme is evident through performance validation of the drive system, which is implemented in a real Ford vehicle. The experimental results obtained while driving the test vehicle are included in the paper while the proposed online scheme is validated on a 3.75 kW prototype induction motor.

Suggested Citation

  • Habibur Rehman, 2015. "Detuning Minimization of Induction Motor Drive System for Alternative Energy Vehicles," Energies, MDPI, vol. 8(9), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:9:p:9117-9136:d:54820
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/9/9117/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/9/9117/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiguang Chen & Bo Zhang, 2017. "Minimization of the Electromagnetic Torque Ripple Caused by the Coils Inter-Turn Short Circuit Fault in Dual-Redundancy Permanent Magnet Synchronous Motors," Energies, MDPI, vol. 10(11), pages 1-23, November.
    2. Konstantina Bitsi & Sjoerd G. Bosga & Oskar Wallmark, 2022. "Design Aspects and Performance Evaluation of Pole-Phase Changing Induction Machines," Energies, MDPI, vol. 15(19), pages 1-18, September.
    3. Hao Yan & Yongxiang Xu & Jibin Zou, 2016. "A Phase Current Reconstruction Approach for Three-Phase Permanent-Magnet Synchronous Motor Drive," Energies, MDPI, vol. 9(10), pages 1-16, October.
    4. Shailendra Rajput & Eliyahu Farber & Moshe Averbukh, 2021. "Optimal Selection of Asynchronous Motor-Gearhead Couple Fed by VFD for Electrified Vehicle Propulsion," Energies, MDPI, vol. 14(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:9:p:9117-9136:d:54820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.