IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i2p1317-1335d45723.html
   My bibliography  Save this article

On the Scale-up of Gas-Hydrate-Forming Reactors: The Case of Gas-Dispersion-Type Reactors

Author

Listed:
  • Yasuhiko H. Mori

    (Department of Mechanical Engineering, Keio University, Yokohama 223-8522, and BNE Mutsuura Laboratory, Yokohama 236-0031, Japan)

Abstract

For establishing hydrate-based technologies for natural-gas storage/transport, CO 2 capture from industrial flue gases, etc. , we need appropriate guidelines for the scale-up of hydrate production/processing equipment from laboratory scales to industrial scales. This paper aims to provide technical remarks on the scale-up of hydrate-forming reactors, the central components of hydrate production/processing equipment, particularly focusing on such a reactor design that hydrate-forming gas is dispersed in an aqueous phase which is either stirred in a tank or forced to flow through a tube. Based on the principles of classical fluid mechanics and heat-transfer analysis, the paper derives semi-empirical formulas that show how the capacity for heat discharge from each reactor and the power for operating the reactor are required to change with an increase in its size. Consequently, it is concluded that the stirred-tank design is unfavorable for significant scale-up and that the scale-up of tubular reactors should be made without significantly increasing the in-tube flow velocity.

Suggested Citation

  • Yasuhiko H. Mori, 2015. "On the Scale-up of Gas-Hydrate-Forming Reactors: The Case of Gas-Dispersion-Type Reactors," Energies, MDPI, vol. 8(2), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:2:p:1317-1335:d:45723
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/2/1317/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/2/1317/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Remi-Erempagamo Tariyemienyo Meindinyo & Thor Martin Svartaas, 2016. "Gas Hydrate Growth Kinetics: A Parametric Study," Energies, MDPI, vol. 9(12), pages 1-29, December.
    2. Anatoliy M. Pavlenko & Hanna Koshlak, 2021. "Intensification of Gas Hydrate Formation Processes by Renewal of Interfacial Area between Phases," Energies, MDPI, vol. 14(18), pages 1-17, September.
    3. Michael T. Kezirian & S. Leigh Phoenix, 2017. "Natural Gas Hydrate as a Storage Mechanism for Safe, Sustainable and Economical Production from Offshore Petroleum Reserves," Energies, MDPI, vol. 10(6), pages 1-8, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:2:p:1317-1335:d:45723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.